1
|
Li Y, Zheng Q, Lu Y, Qiao Y, Guo H, Ma Q, Zhou J, Li H, Wang T. Water temperature disturbance alters the conjugate transfer of antibiotic resistance genes via affecting ROS content and intercellular aggregation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135762. [PMID: 39255666 DOI: 10.1016/j.jhazmat.2024.135762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a significant global challenge to public health. The potential effects of water temperature perturbation induced by specific water environment changes on ARGs transmission are still unclear. The conjugate transfer of plasmid-mediated ARGs under water temperature perturbation was investigated in this study. The conjugate transfer frequency (CTF) was only 7.16 × 10-7 at a constant water temperature of 5 °C, and it reached 2.18 × 10-5 at 30 °C. Interestingly, compared to the constant 5 °C, the water temperature perturbations (cooling and warming models between 5-30 °C) significantly promoted the CTF. Intracellular reactive oxygen species was a dominant factor, which not only directly affected the CTF of ARGs, but also functioned indirectly via influencing the cell membrane permeability and cell adhesion. Compared to the constant 5 °C, water temperature perturbations significantly elevated the gene expression associated with intercellular contact, cell membrane permeability, oxidative stress responses, and energy driven force for CTF. Furthermore, based on the mathematical model predictions, the stabilization times of acquiring plasmid maintenance were shortened to 184 h and 190 h under cooling and warming model, respectively, thus the water temperature perturbations promoted the ARGs transmission in natural conditions compared with the constant low temperature conditions.
Collapse
Affiliation(s)
- Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiyi Zheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanhan Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yinuo Qiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China.
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Li X, Chen T, Ren Q, Lu J, Cao S, Liu C, Li Y. Phages in sludge from the A/O wastewater treatment process play an important role in the transmission of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172111. [PMID: 38565354 DOI: 10.1016/j.scitotenv.2024.172111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Phages can influence the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) through transduction, but their profiles and effects on the transmission of ARGs are unclear, especially in complex swine sludge. In this study, we investigated the characterization of phage and ARG profiles in sludge generated from anoxic/oxic (A/O) wastewater treatment processes on swine farms using metagenomes and viromes. The results demonstrated that 205-221 subtypes of ARGs could be identified in swine sludge, among which sul1, tet(M), and floR were the dominant ARGs, indicating that sludge is an important reservoir of ARGs, especially in sludge (S) tanks. The greater abundance of mobile genetic elements (MGEs) in the S tank could significantly contribute to the greater abundance of ARGs there compared to the anoxic (A) and oxic (O) tanks (P < 0.05). However, when we compared the abundances of ARGs and MGEs in the A and O tanks, we observed opposite significant differences (P < 0.05), suggesting that MGEs are not the only factor influencing the abundance of ARGs. The high proportion of lysogenic phages in sludge from the S tank can also have a major impact on the ARG profile. Siphoviridae, Myoviridae, and Podoviridae were the dominant phage families in sludge, and a network diagram of bacteria-ARG-phages revealed that dominant phages and bacteria acted simultaneously as potential hosts for ARGs, which may have led to phage-mediated HGT of ARGs. Therefore, the risk of phage-mediated HGT of ARGs cannot be overlooked.
Collapse
Affiliation(s)
- Xiaoting Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Tao Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qinghai Ren
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Shengliang Cao
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
4
|
Cai S, Yang Y, Zeng X, Zhu Z, Wang F, Zhang S, Chen F, Cai C, Zeng X, Qiao S. Methionine influences the profile of intestinal antibiotic resistome through inhibiting the growth of Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165610. [PMID: 37474041 DOI: 10.1016/j.scitotenv.2023.165610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance genes (ARGs) are a new type of environmental pollutant. However, studies have mainly focused on the distribution characteristics of ARGs in the livestock environment, lacking of studies on the composition of ARGs in the intestinal tract of animals and the effect of nutrients on intestinal ARGs and microbial communities. Reducing antimicrobial resistance and maintaining optimal animal health and performance are urgently needed. Methionine is an essential amino acid which plays a critical role in the growth and reproductive performance of animals. In this study, feeding experiment, in vitro fermentation and bacterial culture experiment were performed to explore the influence of methionine on the intestinal resistome of sows. We found that dietary 0.2 % methionine supplementation decreased the total abundance of intestinal ARGs, which was further confirmed by in vitro fecal microbial fermentation of sows. Metagenome binning analysis identified that Escherichia coli was the major ARG host, which carried 60-113 ARGs and 134-286 virulence factors, indicating that Escherichia coli in the pig intestine is not only a core ARG host, but also an important pathogen. In addition, we found that methionine supplementation inhibited the growth of Escherichia coli, indicating that dietary methionine may reduce the resistome risk in sow intestine by inhibiting core ARG hosts such as Escherichia coli. These findings reveal that dietary methionine application plays a critical role in intestinal antibiotic resistance, providing a new idea for preventing and controlling environmental pollution by antibiotic-resistant microbes.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| | - Shihai Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China.
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Meng L, Zhao Y, Li X, Kong Y, Guo J, Liu M. The effect of bacterial functional characteristics on the spread of antibiotic resistance genes in Expanded Granular Sludge Bed reactor treating the antibiotic wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112714. [PMID: 34488144 DOI: 10.1016/j.ecoenv.2021.112714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
To explore the fate and spreading mechanism of antibiotics resistance genes (ARGs) in antibiotics wastewater system, a laboratory-scale (1.47 L) Expanded Granular Sludge Bed (EGSB) bioreactor was implemented. The operating parameters temperature (T) and hydraulic retention time (HRT) were mainly considered. This result showed the removal of ARGs and COD was asynchronous, and the recovery speed of ARGs removal was slower than that COD removal. The decreasing T was attributed to the high growth rate of ARGs host bacteria, while the shortened HRT could promote the horizontal and vertical gene transfer of ARGs in the sludge. The analysis result of potential bacterial host showed more than half of the potential host bacteria carried 2 or more ARGs and suggested an indirect mechanism of co-selection of multiple ARGs. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to investigate the functional characteristics of bacterial community. This result showed the bacterial functional genes contributed 40.41% to the abundance change of ARGs in the sludge, which was higher that of bacterial community. And the function genes of "aromatic hydrocarbon degradation", "Replication, recombination and repair proteins" and "Flagellar assembly" were mainly correlated with the transfer of ARGs in the sludge. This study further revealed the mechanism of ARGs spread in the EGSB system, which would provide new ideas for the development of ARGs reduction technology.
Collapse
Affiliation(s)
- Lingwei Meng
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China.
| | - Yuzhe Zhao
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
| | - Xiangkun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China.
| | - Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan 243032, China
| | - Jingbo Guo
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
| | - Mingwei Liu
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
6
|
Autoinducer-2 influences tetracycline resistance in Streptococcus suis by regulating the tet(M) gene via transposon Tn916. Res Vet Sci 2019; 128:269-274. [PMID: 31837515 DOI: 10.1016/j.rvsc.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/31/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
The concern over increasing resistance to tetracyclines (TCs), such as tetracycline and chlortetracycline, necessitates exploration of new approaches to combating infection in antimicrobial therapy. Given that bacteria use the chemical language of autoinducer 2 (AI-2) signaling molecules in order to communicate and regulate group behaviors, we asked whether the AI-2 signaling influence the tetracyclines antibiotics susceptibility in S. suis. Our present work demonstrated that MIC increased when exogenous AI-2 was added, when compared to the wild type strain. When grown in the presence of sub-MIC of antibiotics, it has been shown that exogenous AI-2 increases growth rate and biofilm formation. These results suggest that the TCs resistance in S. suis could involve a signaling mechanism. Base on the above observations, transcriptomic analyses showed significant differences in the expression of tet(M) of tetracyclines resistance genes, as well as differences in Tn916 transposon related genes transcription, as judged by RT-PCR. Our results provide strong evidence that AI-2 signaling molecules is may involve in TCs antibiotic resistance in S. suis by regulating tet(M) gene via Tn916 transposon. This study may suggest that targeting AI-2 signaling in bacteria could represent an alternative approach in antimicrobial therapy.
Collapse
|
7
|
Liu L, Wu R, Zhang J, Li P. Overexpression of luxS Promotes Stress Resistance and Biofilm Formation of Lactobacillus paraplantarum L-ZS9 by Regulating the Expression of Multiple Genes. Front Microbiol 2018; 9:2628. [PMID: 30483223 PMCID: PMC6240686 DOI: 10.3389/fmicb.2018.02628] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Probiotics have evoked great interest in the past years for their beneficial effects. The aim of this study was to investigate whether luxS overexpression promotes the stress resistance of Lactobacillus paraplantarum L-ZS9. Here we show that overexpression of luxS gene increased the production of autoinducer-2 (AI-2, quorum sensing signal molecule) by L. paraplantarum L-ZS9. At the same time, overexpression of luxS promoted heat-, bile salt-resistance and biofilm formation of the strain. RNAseq results indicated that multiple genes encoding transporters, membrane proteins, and transcriptional regulator were regulated by luxS. These results reveal a new role for LuxS in promoting stress resistance and biofilm formation of probiotic starter.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Ruiyun Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Jinlan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Ali F, Yao Z, Li W, Sun L, Lin W, Lin X. In-Silico Prediction and Modeling of the Quorum Sensing LuxS Protein and Inhibition of AI-2 Biosynthesis in Aeromonas hydrophila. Molecules 2018; 23:E2627. [PMID: 30322111 PMCID: PMC6222731 DOI: 10.3390/molecules23102627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
luxS is conserved in several bacterial species, including A. hydrophila, which causes infections in prawn, fish, and shrimp, and is consequently a great risk to the aquaculture industry and public health. luxS plays a critical role in the biosynthesis of the autoinducer-2 (AI-2), which performs wide-ranging functions in bacterial communication, and especially in quorum sensing (QS). The prediction of a 3D structure of the QS-associated LuxS protein is thus essential to better understand and control A. hydrophila pathogenecity. Here, we predicted the structure of A. hydrophila LuxS and characterized it structurally and functionally with in silico methods. The predicted structure of LuxS provides a framework to develop more complete structural and functional insights and will aid the mitigation of A. hydrophila infection, and the development of novel drugs to control infections. In addition to modeling, the suitable inhibitor was identified by high through put screening (HTS) against drug like subset of ZINC database and inhibitor ((-)-Dimethyl 2,3-O-isopropylidene-l-tartrate) molecule was selected based on the best drug score. Molecular docking studies were performed to find out the best binding affinity between LuxS homologous or predicted model of LuxS protein for the ligand selection. Remarkably, this inhibitor molecule establishes agreeable interfaces with amino acid residues LYS 23, VAL 35, ILE76, and SER 90, which are found to play an essential role in inhibition mechanism. These predictions were suggesting that the proposed inhibitor molecule may be considered as drug candidates against AI-2 biosynthesis of A. hydrophila. Therefore, (-)-Dimethyl 2,3-O-isopropylidene-l-tartrate inhibitor molecule was studied to confirm its potency of AI-2 biosynthesis inhibition. The results shows that the inhibitor molecule had a better efficacy in AI-2 inhibition at 40 μM concentration, which was further validated using Western blotting at a protein expression level. The AI-2 bioluminescence assay showed that the decreased amount of AI-2 biosynthesis and downregulation of LuxS protein play an important role in the AI-2 inhibition. Lastly, these experiments were conducted with the supplementation of antibiotics via cocktail therapy of AI-2 inhibitor plus OXY antibiotics, in order to determine the possibility of novel cocktail drug treatments of A. hydrophila infection.
Collapse
Affiliation(s)
- Farman Ali
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou 35002, China.
| | - Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou 35002, China.
| | - Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou 35002, China.
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou 35002, China.
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou 35002, China.
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou 35002, China.
| |
Collapse
|
9
|
Zhang Y, Ma Q, Su B, Chen R, Lin J, Lin Z, Wang D, Yu Y. A study on the role that quorum sensing play in antibiotic-resistant plasmid conjugative transfer in Escherichia coli. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:209-216. [PMID: 29350317 DOI: 10.1007/s10646-017-1886-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 05/21/2023]
Abstract
Horizontal genes transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes (ARGs) in the environment. However, the mechanisms of HGT of ARGs under the influence of antibiotics in sub-MIC remain rarely explored. Moreover, given its collective nature, HGT was considered to be relative to quorum sensing (QS) system. To investigate whether QS has any impact on horizontal gene transfer of ARGs, experiments were conducted to determine the conjugative efficiency of plasmid RP4 on Escherichia coli (E.coli) under the influences of tetracyclines (TCs), quorum sensing autoinducers (AIs) and quorum sensing inhibitors (QSIs). The results indicated that the sub-MIC TCs could facilitate the conjugative transfer of RP4, a process which could be enhanced by AIs but inhibited by QSIs. This study demonstrated the roles that QS played in the dissemination of ARGs, and provided theoretical insights into the mechanism of HGT of ARGs in the environment.
Collapse
Affiliation(s)
- Yueheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, P.R. China
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, P.R. China
| | - Qingping Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, P.R. China
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, P.R. China
| | - Bingmei Su
- Fujian Provincial Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Rui Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, P.R. China
| | - Juan Lin
- Fujian Provincial Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, 200092, Shanghai, P.R. China.
- Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, 201306, P.R. China.
| | - Dali Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, P.R. China
| | - Yang Yu
- Solid Waste and Chemicals Management Center, Ministry of Environmental Protection, 100029, Beijing, P.R. China
| |
Collapse
|
10
|
Yan H, Zhang K, Shentu J, Shen D, Li N, Wang M. Changes to tetracyclines and tetracycline resistance genes in arable soils after single and multiple applications of manure containing tetracyclines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5572-5581. [PMID: 29222656 DOI: 10.1007/s11356-017-0853-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
The influence of manure containing tetracyclines (TCs) on the prevalence of antibiotic resistance genes in soils remains poorly understood. Here, three different TCs (oxytetracycline (OTC), tetracycline (TC), and chlortetracycline (CTC)) were mixed respectively with unpolluted manure to fertilize arable soil. The soil received either a single application of 0 μg kg-1, 300 μg kg-1 (TC and CTC), or 700 μg kg-1 (OTC) or multiple applications every 14 days for 140 days. Four tetracycline resistance genes (TRGs), including tet(A), tet(L), tet(M), and tet(Q), were monitored. Although the abundances of the four TRGs in the single application treatment initially increased rapidly, they decreased over time and were significantly lower than those of the repeated treatments after day 112. All additions of TCs stopped on day 140, but we continued to assess the long-term accumulation of TRGs. Most of the TRGs were detected even after the TC-containing manures had not been applied for more than 15 months. The abundance of the TRGs after ceasing fertilization with the TC-containing manures was higher in the repeated application treatments than in the single application treatments. Therefore, more attention should be paid to repeated applications of antibiotic-containing manure to arable soils.
Collapse
Affiliation(s)
- Huicong Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kun Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China.
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China.
| |
Collapse
|