1
|
Qi Y, Zhong Y, Luo L, He J, Feng B, Wei Q, Zhang K, Ren H. Subsurface constructed wetlands with modified biochar added for advanced treatment of tailwater: Performance and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167533. [PMID: 37793458 DOI: 10.1016/j.scitotenv.2023.167533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The limitations of conventional substrates in treating wastewater treatment plant tailwater are evident in subsurface flow constructed wetlands, and the emergence of biochar presents a solution to this problem. The objective of this study was to assess and prioritize the efficacy of various modified reed biochar in removing pollutants when used as fillers in wetland systems. To achieve this, we established multiple simulation systems of vertical groundwater flow wetlands, each filled with different modified reed biochar. The reed biochar was prepared and modified using Pingluo reed poles from Ningxia. We monitored the quality of the effluent water and the diversity of the microbial community in order to evaluate the pollutant removal performance of the modified biochar under different hydraulic retention times in a laboratory setting. The findings indicated that a hydraulic retention time of 24-48 h was found to be optimal for each wetland system. Furthermore, the composite modified biochar system with KMnO4 and ZnCl2 exhibited higher levels of dissolved oxygen and lower conductivity, resulting in superior pollutant removal performance. Specifically, the system achieved removal rates of 89.94 % for COD, 85.88 % for TP, 91.05 % for TN, and 92.76 % for NH3-N. Additionally, the 16S rRNA high-throughput sequencing analysis revealed that the system displayed high Chao1, Shannon, and Simpson indices of 6548.75, 10.1965, and 0.9944, respectively. The predominant bacterial phyla observed in the wetland system were Proteobacteria, Bacteroidetes, Chloroflexi, Patescibacteria, Firmicutes, and Actinobacteria. Additionally, the denitrifying bacterial class, Rhodobacteriaceae, was found to have the highest content ratio in this system. This finding serves as confirmation that the KMnO4 and ZnCl2 composite modified biochar can significantly enhance water purification performance. Consequently, this study offers valuable insights for wastewater treatment plants seeking to implement vertical submersible artificial wetland tailwater improvement projects.
Collapse
Affiliation(s)
- Yarong Qi
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yanxia Zhong
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China.
| | - Lingling Luo
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Jing He
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Bo Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Qiqi Wei
- School of the Environment & Ecology XiaMen University, XiaMen 361005, People's Republic of China
| | - Koukou Zhang
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Huiqin Ren
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
2
|
Pang Q, Xu W, He F, Peng F, Zhu X, Xu B, Yu J, Jiang Z, Wang L. Functional genera for efficient nitrogen removal under low C/N ratio influent at low temperatures in a two-stage tidal flow constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150142. [PMID: 34509836 DOI: 10.1016/j.scitotenv.2021.150142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A two-stage tidal flow constructed wetland (referred to as TFCW-A and TFCW-B) was used to treat low chemical oxygen demand/total nitrogen (COD/TN or simply C/N) ratio influent at low temperatures (<15 °C). The influence of the flooding-resting time (A: 8 h-4 h, B: 4 h-8 h) and effluent recirculation on nitrogen removal and microbial community characteristics were explored. TFCW-B achieved optimal average nitrogen removal efficiency with effluent recirculation (96.05% ammonium nitrogen (NH4+-N); 78.43% TN) and led to nitrate nitrogen (NO3--N) accumulation due to the lack of a carbon source and longer resting time. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were inhibited at low temperatures. Except for nrfA, AOA, AOB, narG and nirS were separated by the flooding-resting time rather than by spatial position. Furthermore, the dominant genera in TFCW-A were Arthrobacter, Rhodobacter, Pseudomonas, and Solitalea, whereas prolonging resting time promoted the growth of Thauera and Zoogloea in TFCW-B. Spearman correlation analysis showed that Zoogloea and Rhodobacter had the strongest correlations with other genera. Moreover, the NH4+-N concentration was significantly positively influenced by Arthrobacter, Rhodobacter, Pseudomonas, and Solitalea but negatively influenced by Thauera and Zoogloea. There was no significant correlation between TN and the dominant genera. This study not only provides a practicable system for wastewater treatment with a low C/N ratio but also presents a theoretical basis for the regulation of microbial communities in nitrogen removal systems at low temperatures.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Wenwen Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| |
Collapse
|
3
|
Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain. WATER 2021. [DOI: 10.3390/w13172431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Treated wastewater is constantly produced and relatively unaffected by climatic conditions, while Constructed Wetlands (CWs) are recognized as green technology and a cost-effective alternative to improve treated wastewater quality standards. This paper analyses how farmers consider (1) treated wastewater to face water scarcity risk and (2) CW as mechanisms to face agricultural water pollution in a climate change adaptation context. A survey about climate change perception and adaptation measures was answered by 177 farmers from two irrigation communities near El Hondo coastal wetland and the Santa Pola saltmarshes, both perceived as natural-constructed systems in Alicante, southern Spain. Results highlighted how, even with poor-quality standards, treated wastewater is considered a non-riskier measure and more reliable option when addressing climate change impacts. Overall, physical water harvesting (such as CWs) is the favorite choice when investing in water technologies, being perceived as the best option for users of treated wastewater and those concerned about water quality standards. Consequently, CWs were recognized as mechanisms to increase water supply and reduce water pollution. Policy-makers and water managers can use these learnings from farmers’ experience to identify the main barriers and benefits of using treated wastewater and CWs to address water scarcity and water pollution risks.
Collapse
|
4
|
Tang C, Zhao Y, Kang C, He J, Yang Y, Morgan D. Creating tidal flow via siphon for better pollutants removal in a microbial fuel cell-constructed wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112592. [PMID: 33895446 DOI: 10.1016/j.jenvman.2021.112592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Oxygen is the electron acceptor in cathode chamber of microbial fuel cell-constructed wetland system (MFC-CW). The objective of the study lies in creating a "tidal flow" (TF) in cathode chamber via a siphon to enhance the oxygen diffusion, thus promoting the system performance. A laboratory scale MFC-CW with a siphon driven TF recirculation was proposed and designed. It allows the variable water level being created in four operational modes. The results demonstrated the significance of the siphon which was reflected by the attractive wastewater treatment performance. Compared with the tested four operational modes under the same hydraulic condition, the highest total nitrogen removal efficiency of 96.32% and COD removal efficiency of 92.37% were achieved, respectively, in 1st full siphon recirculation mode (FSR) and 2nd FSR operation mode. Indeed, the water level variation range played an important role in pollutants removal performance. Reduced water level variation of the TF in cathode chamber hindered excessive oxygen diffusion into MFC-CW and thus adversely affected the system performance. It is clear that the siphon is a wiser input to bring about the better treatment performance, but it is believed that the enhanced microbial activities behind the oxygen promotion is the driven force to exhibiting a better performance in the MFC-CW system.
Collapse
Affiliation(s)
- Cheng Tang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Chun Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jintao He
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yan Yang
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Morgan
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
A Review of Processes for Removing Antibiotics from Breeding Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094909. [PMID: 34062980 PMCID: PMC8125331 DOI: 10.3390/ijerph18094909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Antibiotic pollution has become an increasingly serious issue due to the extensive application of antibiotics, their resistance to removal, and the harmful effects on aquatic environments and humans. Breeding wastewater is one of the most important sources of antibiotics in the aquatic environment because of the undeveloped treatment systems in breeding farms. It is imperative to establish an effective antibiotic removal process for breeding wastewater. This paper reviews the treatment methods used to remove antibiotics from breeding wastewater. The mechanisms and removal efficiency of constructed wetlands, biological treatments, advanced oxidation processes (AOPs), membrane technology, and combined treatments are explained in detail, and the advantages and disadvantages of the various treatment methods are compared and analyzed. Constructed wetlands have high removal rates for sulfonamide (SM), tetracycline (TC), and quinolone (QN). The antibiotic removal efficiency of biological treatment methods is affected by various processes and environmental factors, whereas AOPs and combined treatment methods have better antibiotic removal effects. Although it has broad application prospects, the application of membrane technology for the treatment of antibiotics in breeding wastewater needs further research.
Collapse
|
6
|
Roth JJ, Passig FH, Zanetti FL, Pelissari C, Sezerino PH, Nagalli A, Carvalho KQD. Influence of the flooded time on the performance of a tidal flow constructed wetland treating urban stream water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143652. [PMID: 33248753 DOI: 10.1016/j.scitotenv.2020.143652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
A vertical subsuperficial tidal flow constructed wetland (TFCW) operated under flooded time (FT) variation, was evaluated in the removal of carbonaceous, nitrogenous, and phosphorous matter from urban stream water. The TFCW downflow (117 L) was filled with bricks (44% porosity) and vegetated with Althernanthera philoxeroides (32 plants m-2). The TFCW was operated under different flooded times - Stage A (48 h), B (36 h), C (24 h), and D (12 h), organic loading rates of 19.58-43.83 gCOD m-2 d-1, 3.68-6.94 gTN m-2 d-1 and 0.93-2.00 gTP m-2 d-1 and volumetric load rates of 46.8, 58.5, 78.0 and 11.7 L d-1. No significant differences were observed in the removal efficiencies to Chemical Oxygen Demand (COD 66 to 94%), Total Ammonia Nitrogen (TAN 58 to 87%), and Total Nitrogen (TN 53 to 78%) among the stages, and nitrate concentrations lower than 6 mg L-1 in the effluent. High Total Phosphorus removal was obtained in FT of 48 h (TP 79%). Total phosphorus loading rate was a limiting factor in TP removal, which reduced along with the reduction of FT. The nitrifying community was present over time since ammonia-oxidizing bacteria (Nitrosospira) and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira) were identified in operational stages with variation in relative abundance, but TAN removal efficiency did not show significant differences. There was no change in the denitrifying community structure, indicating that FT did not influence the TN removal. A. philoxeroides was responsible for phytoextraction of 2.1% of TN and 2.7% of TP from the total removed by TFCW. TN removal (65%) was attributed to adsorption in the filtering material and microbial metabolism during the rest time. The findings of this study suggest FT of 12 h to remove COD and TN, and equal to or higher than 48 h to remove TP.
Collapse
Affiliation(s)
- Jonar Johannes Roth
- The Federal University of Technology - Paraná (UTFPR), Environmental Sciences and Technology Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- The Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Francine Leal Zanetti
- The Federal University of Technology - Paraná (UTFPR), Environmental Sciences and Technology Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Catiane Pelissari
- Federal University of Santa Catarina (UFSC), Department of Sanitary and Environmental Engineering, Eng. Agronômico Andrei Cristian Ferreira St., Trindade, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Pablo Heleno Sezerino
- Federal University of Santa Catarina (UFSC), Department of Sanitary and Environmental Engineering, Eng. Agronômico Andrei Cristian Ferreira St., Trindade, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - André Nagalli
- The Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- The Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| |
Collapse
|
7
|
Lu J, Guo Z, Kang Y, Fan J, Zhang J. Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111330. [PMID: 32977288 DOI: 10.1016/j.ecoenv.2020.111330] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetland has attracted more and more attention for wastewater purification due to its low construction cost and convenient operation recently. However, the unique waterflooding structure of constructed wetland makes the low dissolved oxygen level, which limits the effect of nitrogen removal in the system. Therefore, it is necessary to develop the oxygen-increasing technology to overcome the drawback in constructed wetlands. In this review, the mechanism of nitrogen removal in constructed wetland is discussed and oxygen is main influence factor is concluded. In addition, oxygen-increasing technologies in recent advances which improve the nitrogen removal efficiency greatly, are emphatically introduced. Finally, some future perspectives about oxygen-increasing techniques are also put forward in order to provide reference for further research and engineering application.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinlin Fan
- Department of Science and Technology Management, Shandong University, Jinan, 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
8
|
Beltrame TF, Zoppas FM, Marder L, Marchesini FA, Miró E, Bernardes AM. Use of a two-step process to denitrification of synthetic brines: electroreduction in a dual-chamber cell and catalytic reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1956-1968. [PMID: 31768960 DOI: 10.1007/s11356-019-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Membrane separation processes are being currently applied to produce drinking water from water contaminated with nitrate. The overall process generates a brine with high nitrate/nitrite concentration that is usually send back to a conventional wastewater treatment plant. Catalytic processes to nitrate reduction are being studied, but the main goal of achieving a high selectivity to nitrogen production is still a matter of research. In this work, a two-step process was evaluated, aiming to verify the best combination of operational parameters to efficiently reduce nitrate to nitrogen. In the first step, the nitrate was reduced to nitrite by electroreduction, applying a copper electrode and different cell potentials. A second step of the process was carried out by reducing the generated nitrite with a catalytic process by hydrogenation. The results showed that the highest nitrate reduction (89%) occurred when a cell potential of 11 V was applied. In this condition, the nitrite ion was generated with all experimental conditions evaluated. Then, to reduce the nitrite ion formed by catalytic reduction, activated carbon fibers (ACF) and powder γ-alumina (γ-Al2O3) were tested as supports for palladium (Pd). With both catalysts, the total nitrite conversion was obtained, being the selectivity to gaseous compounds 94% and 97% for Pd/Al2O3 and Pd/ACF, respectively. Considering the results obtained, a two-stage treatment setup to brine denitrification may be proposed. With electrochemistry, an operating condition was achieved in which ammonium production can be controlled to very low values, but the reduction is predominant to nitrite. With the second step, all nitrite is converted to nitrogen gas and just 3% of ammonium is produced with the most selective catalyst. The main novelty of this work is associated to the use of a two-stage process enabling 89% of nitrate reduction and 100% of nitrite reduction.
Collapse
Affiliation(s)
- Thiago Favarini Beltrame
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais (LACOR, UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
- Instituto de Investigaciones en Catálisis y Petroquímica (FIQ, UNL-CONICET), Santiago del Estero, 2829, S3000, Santa Fe, Argentina
| | - Fernanda Miranda Zoppas
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais (LACOR, UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil.
- Instituto de Investigaciones en Catálisis y Petroquímica (FIQ, UNL-CONICET), Santiago del Estero, 2829, S3000, Santa Fe, Argentina.
| | - Luciano Marder
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais (LACOR, UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Fernanda Albana Marchesini
- Instituto de Investigaciones en Catálisis y Petroquímica (FIQ, UNL-CONICET), Santiago del Estero, 2829, S3000, Santa Fe, Argentina
| | - Eduardo Miró
- Instituto de Investigaciones en Catálisis y Petroquímica (FIQ, UNL-CONICET), Santiago del Estero, 2829, S3000, Santa Fe, Argentina
| | - Andrea Moura Bernardes
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais (LACOR, UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| |
Collapse
|
9
|
Zhuang LL, Yang T, Zhang J, Li X. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. BIORESOURCE TECHNOLOGY 2019; 293:122086. [PMID: 31495460 DOI: 10.1016/j.biortech.2019.122086] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/10/2023]
Abstract
Constructed wetland (CW) for wastewater treatment has attracted increasing attention. In this review, the system configuration optimization, purification effect and general mechanisms of nitrogen removal in CW are systematically summarized and discussed. Ammonia oxidation is a crucial and primary process for total nitrogen (TN) removal in domestic or livestock wastewater treatment. Aeration, waterdrop influent and tidal operation are three main methods to strengthen the oxygen supplement and nitrification process in CW. Aeration significantly increases the ammonia removal rate (almost 100%), followed by the removal of chemical oxygen demand (COD) and TN. Solid carbon source, iron and anode material can be filled as electron donor for the denitrification process. The co-adjustment of oxygen and carbon/electron donor can form different conditions for different nitrogen removal pathways (e.g. the simultaneous nitrification-denitrification, the partial nitrification-denitrification and the anammox process), and achieve the optimal removal of nitrogen.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| | - Xiangzheng Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Silvestrini NEC, Hadad HR, Maine MA, Sánchez GC, Del Carmen Pedro M, Caffaratti SE. Vertical flow wetlands and hybrid systems for the treatment of landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8019-8027. [PMID: 30684173 DOI: 10.1007/s11356-019-04280-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Landfill leachates contain a variety of toxic compounds, which makes them one of the most difficult types of wastewater to be treated. An alternative "green" technology for leachate treatment is the use of constructed wetlands (CWs). The aims of this study were to select macrophytes and substrates to be used in vertical flow wetlands (VFWs) and to evaluate the performance of hybrid systems composed by a VFW and a horizontal subsurface flow (HSSW) or a free water surface flow (FWSW) wetlands for the treatment of a high ammonium concentration landfill leachate. In microcosms scale experiments, Typha domingensis, Scirpus californicus, and Iris pseudacorus were studied to assess their tolerance to raw and diluted leachate. Substrate selection for VFWs was evaluated using different layers of light expanded clay aggregate (LECA), coarse sand, fine sand, and gravel. Contaminant removals were higher in planted than in unplanted wetlands. Plants did not tolerate the raw effluent but showed a positive effect on plant growth when exposed to the diluted leachate. T. domingensis and I. pseudacorus showed higher contaminant removal ability and tolerance to landfill leachate than S. californicus. VFW with LECA + coarse sand showed the best performance in removal efficiencies. Hybrid system composed by VFW-FWSW planted with T. domingensis presented the best performance for the treatment of landfill leachate with high concentrations of ammonium.
Collapse
Affiliation(s)
- Nahuel Ernesto Camaño Silvestrini
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina.
| | - Hernán Ricardo Hadad
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| | - María Alejandra Maine
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| | - Gabriela Cristina Sánchez
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| | - María Del Carmen Pedro
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| | - Sandra Ester Caffaratti
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| |
Collapse
|
11
|
Lyu T, He K, Dong R, Wu S. The intensified constructed wetlands are promising for treatment of ammonia stripped effluent: Nitrogen transformations and removal pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:273-282. [PMID: 29414349 DOI: 10.1016/j.envpol.2018.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the treatment performance and nitrogen removal mechanism of highly alkaline ammonia-stripped digestate effluent in horizontal subsurface flow constructed wetlands (CWs). A promising nitrogen removal performance (up to 91%) was observed in CWs coupled with intensified configurations, i.e., aeration and effluent recirculation. The results clearly supported that the higher aeration ratio and presence of effluent recirculation are important to improve the alkalinity and pollutant removal in CWs. The influent pH (>10) was significantly decreased to 8.2-8.8 under the volumetric hydraulic loading rates of 0.105 and 0.21 d-1 in the CWs. Simultaneously, up to 91% of NH4+-N removal was achieved under the operation of a higher aeration ratio and effluent recirculation. Biological nitrogen transformations accounted for 94% of the consumption of alkalinity in the CWs. The significant enrichment of δ15N-NH4+ in the effluent (47-58‰) strongly supports the occurrence of microbial transformations for NH4+-N removal. However, relatively lower enrichment factors of δ15N-NH4+ (-1.8‰ to -11.6‰) compared to the values reported in previous studies reflected the inhibition effect of the high pH alkaline environment on nitrifiers in these CWs.
Collapse
Affiliation(s)
- Tao Lyu
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China; School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottinghamshire NG25 0QF, UK
| | - Keli He
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Renjie Dong
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shubiao Wu
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark.
| |
Collapse
|