1
|
Li L, Niu X, Zhang D, Ye X, Zhang Z, Liu Q, Ding L, Chen K, Chen Y, Chen K, Shi Z, Lin Z. A systematic review on percarbonate-based advanced oxidation processes in wastewater remediation: From theoretical understandings to practical applications. WATER RESEARCH 2024; 259:121842. [PMID: 38820735 DOI: 10.1016/j.watres.2024.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Percarbonate encompasses sodium percarbonate (SPC) and composite in-situ generated peroxymonocarbonate (PMC). SPC emerges as a promising alternative to hydrogen peroxide (H2O2), hailed for its superior transportation safety, stability, cost-effectiveness, and eco-friendliness, thereby becoming a staple in advanced oxidation processes for mitigating water pollution. Yet, scholarly literature scarcely explores the deployment of percarbonate-AOPs in eradicating organic contaminants from aquatic systems. Consequently, this review endeavors to demystify the formation mechanisms and challenges associated with reactive oxygen species (ROS) in percarbonate-AOPs, alongside highlighting directions for future inquiry and development. The genesis of ROS encompasses the in situ chemical oxidation of activated SPC (including iron-based activation, discharge plasma, ozone activation, photon activation, and metal-free materials activation) and composite in situ chemical oxidation via PMC (namely, H2O2/NaHCO3/Na2CO3, peroxymonosulfate/NaHCO3/Na2CO3 systems). Moreover, the ROS generated by percarbonate-AOPs, such as •OH, O2•-, CO3•-, HO2•-, 1O2, and HCO4-, can work individually or synergistically to disintegrate target pollutants. Concurrently, this review systematically addresses conceivable obstacles posing percarbonate-AOPs in real-world application from the angle of environmental conditions (pH, temperature, coexisting substances), and potential ecological toxicity. Considering the outlined challenges and advantages, we posit future research directions to amplify the applicability and efficacy of percarbonate-AOPs in tangible settings. It is anticipated that the insights provided in this review will catalyze the progression of percarbonate-AOPs in water purification endeavors and bridge the existing knowledge void.
Collapse
Affiliation(s)
- Ling Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xinyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhilin Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Kun Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yang Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Kunyang Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Zhaocai Shi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Gu C, Li J, Zhou W, An J, Tian L, Xiong F, Fei W, Feng Y, Ma J. Abiotic natural attenuation of 1,2,3-trichloropropane by natural magnetite under O 2 perturbation. CHEMOSPHERE 2024; 357:142040. [PMID: 38615949 DOI: 10.1016/j.chemosphere.2024.142040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
1,2,3-Trichloropropane (TCP) is an emerging groundwater pollutant, but there is a lack of reported studies on the abiotic natural attenuation of TCP by iron minerals. Furthermore, perturbation by O2 is common in the shallow subsurface by both natural and artificial processes. In this study, natural magnetite was selected as the reactive iron mineral to investigate its role in the degradation of TCP under O2 perturbation. The results indicated that the mineral structural Fe(II) on magnetite reacted with dissolved oxygen to generate O2-· and HO·. Both O2-· and HO· contributed to TCP degradation, with O2-· playing a more important role. After 56 days of reaction, 66.7% of TCP was completely dechlorinated. This study revealed that higher magnetite concentrations, smaller magnetite particle sizes, and lower initial TCP concentrations favored TCP degradation. The presence of <10 mg/L natural organic matter (NOM) did not affect TCP degradation. These findings significantly advance our understanding of the abiotic natural attenuation mechanisms facilitated by iron minerals under O2 perturbation, providing crucial insights for the study of natural attenuation.
Collapse
Affiliation(s)
- Chunyun Gu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiabin Li
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Wei Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiayi An
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Liting Tian
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Feng Xiong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Wenbo Fei
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yangfan Feng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
3
|
Li Y, Dong H, Xiao J, Li L, Chu D, Hou X, Xiang S, Dong Q, Zhang H. Advanced oxidation processes for water purification using percarbonate: Insights into oxidation mechanisms, challenges, and enhancing strategies. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130014. [PMID: 36152542 DOI: 10.1016/j.jhazmat.2022.130014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Percarbonate (SPC) has drawn considerable attention due to its merits in the safety of handling and transport, stability, and price as well as environmental friendliness, which has been extensively applied in advanced oxidation processes (AOPs) for water decontamination. Nevertheless, comprehensive information on the application of SPC-AOPs for the treatment of organic compounds in aquatic media is scarce. Hence, the focus of this review is to shed light on the mechanisms of reactive oxygen species (ROS) evolution in typical SPC-AOPs (i.e., Fenton-like oxidation, photo-assisted oxidation, and discharge plasma-involved oxidation processes). These SPC-AOPs enable the formation of multiple reactive species like hydroxyl radical (•OH), superoxide radical (O2•-), singlet oxygen (1O2), carbonate radicals (CO3•-), and peroxymonocarbonate (HCO4-), which together or solely contribute to the degradation of target pollutants. Simultaneously, the potential challenges in practical applications of SPC-AOPs are systematically discussed, which include the influence of water quality parameters, cost-effectiveness, available active sites, feasible activation approaches, and ecotoxicity. Subsequently, enhancing strategies to improve the feasibility of SPC-AOPs in the practical implementation are tentatively proposed, which can be achieved by introducing reducing and chelating agents, developing novel activation approaches, designing multiple integrated oxidation processes, as well as alleviating the toxicity after SPC-AOPs treatment. Accordingly, future perspectives and research gaps in SPC-AOPs are elucidated. This review will hopefully offer valuable viewpoints and promote the future development of SPC-AOPs for actual water purification.
Collapse
Affiliation(s)
- Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoxuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Zhang BT, Kuang L, Teng Y, Fan M, Ma Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J Environ Sci (China) 2021; 105:100-115. [PMID: 34130827 DOI: 10.1016/j.jes.2020.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 05/21/2023]
Abstract
Sodium percarbonate (SPC) and peroxymonocarbonate (PMC) have been widely used in modified Fenton reactions because of their multiple superior features, such as a wide pH range and environmental friendliness. This broad review is intended to provide the fundamental information, status and progress of SPC and PMC based decontamination technologies according to the peer-reviewed papers in the last two decades. Both SPC and PMC can directly decompose various pollutants. The degradation efficiency will be enhanced and the target contaminants will be expanded after the activation of SPC and PMC. The most commonly used catalysts for SPC activation are iron compounds while cobalt compositions are applied to activate PMC in homogenous and heterogeneous catalytical systems. The generation and participation of hydroxyl, superoxide and/or carbonate radicals are involved in the activated SPC and PMC system. The reductive radicals, such as carbon dioxide and hydroxyethyl radicals, can be generated when formic acid or methanol is added in the Fe(II)/SPC system, which can reduce target contaminants. SPC can also be activated by energy, tetraacetylethylenediamine, ozone and buffered alkaline to generate different reactive radicals for pollutant decomposition. The SPC and activated SPC have been assessed for application in-situ chemical oxidation and sludge dewatering treatment. The challenges and prospects of SPC and PMC based decontamination technologies are also addressed in the last section.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lulu Kuang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, United States.
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
5
|
Ali M, Shan A, Sun Y, Gu X, Lyu S, Zhou Y. Trichloroethylene degradation by PVA-coated calcium peroxide nanoparticles in Fe(II)-based catalytic systems: enhanced performance by citric acid and nanoscale iron sulfide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3121-3135. [PMID: 32902746 DOI: 10.1007/s11356-020-10678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
In this study, the enhanced trichloroethylene (TCE) degradation performance was investigated by polyvinyl alcohol coated calcium peroxide nanoparticles (PVA@nCP) as an oxidant in Fe(II)-based catalytic systems. The nanoscale iron sulfide (nFeS), having an average particle size of 115.4 nm, was synthesized in the laboratory and characterized by SEM, TEM, HR-TEM along with EDS elemental mapping, XRD, FTIR, ICP-OES, and XPS techniques. In only ferrous iron catalyzed system (PVA@nCP/Fe(II)), TCE degradation was recorded at 58.9% in 6 h. In comparison, this value was increased to 97.5% or 99.7% with the addition of citric acid (CA) or nFeS in PVA@nCP/Fe(II) system, respectively. A comparative study was performed with optimum usages of chemical reagents in both PVA@nCP/Fe(II)/CA and PVA@nCP/Fe(II)/nFeS systems. Further, the probe compounds tests and electron paramagnetic resonance (EPR) analysis confirmed the generation of reactive oxygen species. The scavenging experiments elucidated the dominant role of HO• to TCE degradation, particularly in PVA@nCP/Fe(II)/nFeS system. Both CA and nFeS strengthened PVA@nCP/Fe(II) system, but displayed completely different mechanisms in the enhancement of active radicals generation; hence, their different contribution to TCE degradation. The acidic environment was favorable for TCE degradation, and a high concentration of HCO3- inhibited TCE removal in both systems. Conclusively, compared to PVA@nCP/Fe(II)/nFeS system, PVA@nCP/Fe(II)/CA system resulted in encouraging TCE degradation outcomes in actual groundwater, showing great potential for prolonged benefits in the remediation of TCE polluted groundwater. Graphical abstract.
Collapse
Affiliation(s)
- Meesam Ali
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, 60000, Pakistan
| | - Ali Shan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
- Department of Environmental Sciences, The University of Lahore, Lahore, 46000, Pakistan
| | - Yong Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaogang Gu
- Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd, 3447 Dongfang Road, Shanghai, 200125, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
6
|
Liu T, Wang S, Ma H, Jin H, Li J, Yang X, Gao X, Chang Y. Microwave-Assisted Extraction Combined with In-Capillary [Fe(ferrozine) 3] 2+-CE-DAD to Screen Active Components with the Ability to Chelate Ferrous Ions from Flos Sophorae Immaturus (Flos Sophorae). Molecules 2019; 24:molecules24173052. [PMID: 31443451 PMCID: PMC6749251 DOI: 10.3390/molecules24173052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
An efficient microwave-assisted extraction (MAE) combined with in-capillary [Fe(ferrozine)3]2+-capillary electrophoresis-Diode Array Detector (in-capillary [Fe(ferrozine)3]2+-CE-DAD) was developed to screen active components with the ability to chelate ferrous ions and determine the total antioxidant activity. The MAE conditions, including methanol concentration, extraction power, extraction time, and the ratio of material to liquid, were optimized by an L9(34) orthogonal experiment. Background buffer, voltage, and cartridge temperature that affect the separation of six compounds were optimized. It was found that rutin and quercetin were the main components chelating ferrous ions in Flos Sophorae Immaturus (Flos Sophorae) by the in-capillary [Fe(ferrozine)3]2+-CE-DAD. The recoveries were ranged from 95.2% to 104%. It was concluded that the MAE combined with in-capillary [Fe(ferrozine)3]2+-CE-DAD method was a simple, reliable, and efficient tool for screening active components from the complex traditional Chinese medicine samples and evaluating their ability to chelate ferrous ions.
Collapse
Affiliation(s)
- Tao Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shanshan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Huifen Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hua Jin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
7
|
Farooq U, Danish M, Lyu S, Brusseau ML, Gu M, Zaman WQ, Qiu Z, Sui Q. The impact of surface properties and dominant ions on the effectiveness of G-nZVI heterogeneous catalyst for environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1182-1188. [PMID: 30360250 PMCID: PMC6435274 DOI: 10.1016/j.scitotenv.2018.09.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 05/14/2023]
Abstract
The surface properties of nanocomposites are influenced by the existence of inorganic species that may affect its performance for specific catalytic applications. The impact of different ionic species on particular catalytic activity had not been investigated to date. In this study, the surface charge (zeta potential) of graphene-oxide-supported nano zero valent iron (G-nZVI) was tested in definitive cationic (Na+, K+, Ca2+ and Mg2+) and anionic (Br-, Cl-, NO3-, SO42-, and HCO3-) environments. The efficiency of G-nZVI catalyst was inspected by measuring the generation of reactive oxygen species (ROS) for the degradation of 1,1,1-trichloroethane (TCA) in sodium percarbonate (SPC) system. Tests conducted using probe compounds confirmed the generation of OH and O2- radicals in the system. In addition, the experiments performed using scavenging agents certified that O2- were primary radicals responsible for TCA removal, along with prominent contribution from OH radicals. The study confirmed that G-nZVI catalytic capability for TCA degradation is notably affected by various cationic species. The presence of Ni2+ and Cu2+ significantly enhanced (94%), whereas Na+ and K+ had minor effects on TCA removal. Overall, the results indicated that groundwater ionic composition may have low impact on the effectiveness of G-nZVI-catalyzed peroxide TCA treatment.
Collapse
Affiliation(s)
- Usman Farooq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200098, China
| | - Muhammad Danish
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200098, China.
| | - Mark L Brusseau
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721, United States
| | - Mengbin Gu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Waqas Qamar Zaman
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaofu Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200098, China.
| |
Collapse
|