1
|
Mao Y, Qiu H, Gao X, Li Y, Zheng X, Cai Y, Sheng G, Shen Y, Wang J, Zhou M, Duan Y. Resistance Risk and Molecular Mechanism of Tomato Wilt Pathogen Fusarium oxysporum f. sp. lycopersici to Pyraclostrobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3998-4007. [PMID: 38372233 DOI: 10.1021/acs.jafc.3c09907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Tomato wilt disease caused by Fusarium oxysporum f. sp. lycopersici (Fol) results in a decrease in tomato yield and quality. Pyraclostrobin, a typical quinone outside inhibitor (QoI), inhibits the cytochrome bc1 complex to block energy transfer. However, there is currently limited research on the effectiveness of pyraclostrobin against Fol. In this study, we determined the activity of pyraclostrobin against Fol and found the EC50 values for pyraclostrobin against 100 Fol strains (which have never been exposed to QoIs before). The average EC50 value is 0.3739 ± 0.2413 μg/mL, indicating a strong antifungal activity of pyraclostrobin against Fol, as shown by unimodal curves of the EC50 values. Furthermore, we generated five resistant mutants through chemical taming and identified four mutants with high-level resistance due to the Cytb-G143S mutation and one mutant with medium-level resistance due to the Cytb-G137R mutation. The molecular docking results indicate that the Cytb-G143S or Cytb-G137R mutations of Fol lead to a change in the binding mode of Cytb to pyraclostrobin, resulting in a decrease in affinity. The resistant mutants exhibit reduced fitness in terms of mycelial growth (25 and 30 °C), virulence, and sporulation. Moreover, the mutants carrying the Cytb-G143S mutation suffer a more severe fitness penalty compared to those carrying the Cytb-G137R mutation. There is a positive correlation observed among azoxystrobin, picoxystrobin, fluoxastrobin, and pyraclostrobin for resistant mutants; however, no cross-resistance was detected between pyraclostrobin and pydiflumetofen, prochloraz, or cyazofamid. Thus, we conclude that the potential risk of resistance development in Fol toward pyraclostrobin can be categorized as ranging from low to moderate.
Collapse
Affiliation(s)
- Yushuai Mao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute, Nanjing Agricultural University, Sanya 572025, China
| | - Hui Qiu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute, Nanjing Agricultural University, Sanya 572025, China
| | - Xinlong Gao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yige Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanming Zheng
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiang Cai
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guilin Sheng
- Institute for the Control of Agrochemicals Jiangsu Province, Nanjing 210036, China
| | - Yingchun Shen
- Institute for the Control of Agrochemicals Jiangsu Province, Nanjing 210036, China
| | - Jianxin Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute, Nanjing Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Deng Y, Wang T, Zhao P, Du Y, Zhang L, Qi Z, Ji M. Sensitivity to 12 Fungicides and Resistance Mechanism to Trifloxystrobin, Carbendazim, and Succinate Dehydrogenase Inhibitors in Cucumber Corynespora Leaf Spot ( Corynespora cassiicola). PLANT DISEASE 2023; 107:3783-3791. [PMID: 37189041 DOI: 10.1094/pdis-04-23-0615-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Corynespora cassiicola is the causal agent of cucumber Corynespora leaf spot, which affects many economically important plant species. Chemical control of this disease is hampered by the common development of fungicide resistance. In this study, 100 isolates from Liaoning Province were collected, and their sensitivity to 12 fungicides was determined. All the isolates (100%) were resistant to trifloxystrobin and carbendazim, and 98% were resistant to fluopyram, boscalid, pydiflumetofen, isopyrazam, and fluxapyroxad. However, none were resistant to propiconazole, prochloraz, tebuconazole, difenoconazole, and fludioxonil. The Cytb gene of trifloxystrobin-resistant isolates encoded the G143A mutation, whereas the β-tubulin gene of carbendazim-resistant isolates encoded the E198A and E198A and M163I mutations. Mutations in SdhB-I280V, SdhC-S73P, SdhC-H134R, SdhD-D95E, and SdhD-G109V were associated with resistance to the succinate dehydrogenase inhibitors (SDHIs). Trifloxystrobin, carbendazim, and fluopyram were barely effective on the resistant isolates, whereas fludioxonil and prochloraz were effective on the isolates that were resistant to the quinone outside inhibitors (QoIs), SDHIs, and benzimidazoles. Ultimately, this study demonstrates that fungicide resistance seriously threatens the effective control of Corynespora leaf spot.
Collapse
Affiliation(s)
- Yunyan Deng
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang 110021, China
| | - Ying Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - LuLu Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiqui Qi
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Chu SC, Lin KH, Lin TC, Thanarut C, Chung WH. Sensitivity of Colletotrichum gloeosporioides species complex (CGSC) isolated from strawberry in Taiwan to benzimidazole and strobilurin. JOURNAL OF PESTICIDE SCIENCE 2022; 47:172-183. [PMID: 36514689 PMCID: PMC9716047 DOI: 10.1584/jpestics.d22-030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Colletotrichum gloeosporioides species complex (CGSC) is the major pathogen causing strawberry anthracnose in Taiwan. Benzimidazoles and strobilurins are common fungicides used to control strawberry anthracnose. A total of 108 CGSC isolates were collected from five major strawberry-producing areas in Taiwan. The half-maximal effective concentration (EC50) values of most CGSC isolates for benomyl (59 isolates), carbendazim (70 isolates), and thiabendazole (63 isolates) were higher than 500 µg a.i./mL. Strobilurin tests showed that the EC50 values of most CGSC isolates for azoxystrobin (66 isolates), kresoxim-methyl (42 isolates), and trifloxystrobin (56 isolates) were higher than 500 µg a.i./mL. However, most CGSC isolates were sensitive to pyraclostrobin at 100 µg a.i./mL. Fungicide tests indicated that CGSC isolates show multi-resistance to benzimidazoles and strobilurins. Benzimidazole-resistant isolates were associated with a point mutation in codon 198 of the β-tubulin gene, and strobilurin-resistant isolates did not correspond with mutation in the cyt b gene or alternative oxidase activity.
Collapse
Affiliation(s)
- Sheng-Chi Chu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan
- Department of Plant Pathology, National Chung Hsing University
| | | | - Tsung-Chun Lin
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan
| | - Chinnapan Thanarut
- Faculty of Agricultural Production, Division of Pomology Maejo University
| | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung Hsing University
- Innovation and Development center of sustainable Agriculture (IDCSA), National Chung Hsing University
| |
Collapse
|