1
|
Mahmood S, Parwez H, Siddique YH, Amir M, Javed S. Assessing the multi-dimensional impact of lead-induced toxicity on collembola found in maize fields: From oxidative stress to genetic disruptions. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503789. [PMID: 39147442 DOI: 10.1016/j.mrgentox.2024.503789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 08/17/2024]
Abstract
The prolonged exposure of agricultural soils to heavy metals from wastewater, particularly in areas near industrial facilities, poses a significant threat to the well-being of living organisms. The World Health Organization (WHO) has established standard permissible limits for heavy metals in agricultural soils to mitigate potential health hazards. Nevertheless, some agricultural fields continue to be irrigated with wastewater containing industrial effluents. This study aimed to assess the concentration of lead in soil samples collected from agricultural fields near industrial areas. Subsequently, we determined the lethal concentration (LC50) of lead (Pb) and other heavy metals for two Collembola species, namely Folsomia candida, a standard organism for soil ecotoxicity tests, and comparing it with Proisotoma minuta. The research further examined the toxic effects of lead exposure on these two species, revealing depletion in the energy reservoirs and alterations in the tissue histology of both organisms. The study revealed that lead can induce genotoxic damage as it evidently has moderate binding affinity with the ct-DNA and hence can cause DNA fragmentation and the formation of micronuclei. Elevated lipid peroxidation (LPO) levels and protein carbonylation levels were observed, alongside a reduction in antioxidant enzymes (CAT, SOD & GPx). These findings suggest that lead disrupts the balance between oxidants and the antioxidant enzyme system, impairing defense mechanisms and consequential derogatory damage within microarthropods. The investigation elucidates a complex network of various signaling pathways compromised as a result of lead toxicity. Hence, it presents a novel perspective that underscores the pressing necessity for implementing an integrated risk assessment framework at the investigated site.
Collapse
Affiliation(s)
- Samar Mahmood
- Insect Toxicology and Biodiversity Lab, Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202001, India
| | - Hina Parwez
- Insect Toxicology and Biodiversity Lab, Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202001, India.
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202001, India
| | - Mohd Amir
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| | - Saleem Javed
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| |
Collapse
|
2
|
Liu S, Sun L, Liang F, Wang Z, Zhao J, Li S, Ke X, Li Z, Wu L. Ecotoxicity of thallium to two soil animal species with different niches and modification by organic materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174733. [PMID: 39032744 DOI: 10.1016/j.scitotenv.2024.174733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/29/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Soil thallium (Tl) contamination is of major public concern but little is known about soil Tl ecological toxicity or potential ecological remediation strategies. Here, two soil animal species with different ecological niches, Folsomia candida and Enchytraeus crypticus, were used to test Tl toxicity and modification by exogenous organic materials (i.e. maize straw and biochar). The endpoints of Tl ecotoxicity to F. candida and E. crypticus were studied at two biological levels, i.e., the individual (body Tl concentrations) and the population (survival, reproduction, and growth). Thallium concentrations in F. candida and E. crypticus increased with increasing soil Tl concentration, and their survival and reproduction rates decreased with increasing soil Tl concentration. The LC50 value of Tl effects on F. candida mortality (28 d) was 24.0 mg kg-1 and the EC50 value of reproduction inhibition was 6.51 mg kg-1. The corresponding values were 4.15 mg kg-1 and 2.31 mg kg-1 respectively for E. crypticus showing higher sensitivity to soil Tl than F. candida. These effective values are comparable to or much lower than the environmental Tl concentrations in field soils, suggesting high potential ecological risk. Both biochar and straw can decrease animal body Tl concentrations in different ways, i.e. reducing Tl availability or offering clean food sources, and addition of exogenous organic materials clearly mitigated Tl ecotoxicity in highly polluted soil. The results highlight the potential Tl ecological risk to soil animals and the potential use of organic materials to control the toxicity.
Collapse
Affiliation(s)
- Siyao Liu
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, MOE, Shenyang University, Shenyang 110044, China
| | - Lina Sun
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, MOE, Shenyang University, Shenyang 110044, China.
| | - Fang Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Zinan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jiejie Zhao
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, MOE, Shenyang University, Shenyang 110044, China
| | - Shaobin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Xin Ke
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
3
|
Rizwan M, Usman K, Alsafran M. Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. CHEMOSPHERE 2024; 357:142028. [PMID: 38621494 DOI: 10.1016/j.chemosphere.2024.142028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
4
|
Silva ASJ, Kristiansen SM, Sengupta S, van Gestel CAM, Leinaas HP, Borgå K. Using dietary exposure to determine sub-lethal effects from imidacloprid in two springtail (Collembola) species. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1209-1220. [PMID: 37989986 PMCID: PMC10724306 DOI: 10.1007/s10646-023-02715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Standard toxicity tests expose springtails (Collembola) through soil, while dietary exposure tests with animals visible on a surface are less commonly applied. We refined a method for dietary chemical exposure for two widely distributed and abundant Collembola species: Folsomia quadrioculata and Hypogastrura viatica as existing methods were sub-optimal. Newly hatched Collembola were offered bark with a natural layer of Cyanobacteria that was either moistened with a solution of the neonicotinoid insecticide imidacloprid using a micropipette or soaked in the solution overnight. The first method was superior in producing a measured concentration close to the nominal (0.21 and 0.13 mg/kg dry bark, respectively), and resulting in sub-lethal effects as expected. The adult body size was reduced by 8% for both species, but egg production only in H. viatica. Contrastingly, soaked bark resulted in a measured concentration of 8 mg/kg dry bark, causing high mortality and no egg production in either species. Next, we identified the sub-lethal concentration-range by moistening the bark to expose H. viatica to 0, 0.01, 0.04, 0.13, 0.43 and 1.2 mg imidacloprid/kg dry bark. Only the highest concentration affected survival, causing a mortality of 77%. Imidacloprid reduced moulting rate and the body size at first reproduction. The age at first reproduction appeared delayed as some replicates did not reproduce within the experiment duration. The method of moistened bark for dietary exposure proved optimal to continuously study life history traits, such as growth and reproductive outcomes, which are important to understand effects on key events crucial for population viability and growth.
Collapse
Affiliation(s)
- Andreia Sofia Jorge Silva
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Silje Marie Kristiansen
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sagnik Sengupta
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hans Petter Leinaas
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Katrine Borgå
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Malheiro C, Prodana M, Cardoso DN, Soares AMVM, Morgado RG, Loureiro S. Soil habitat function after innovative nanoagriproducts application: Effect of ageing on the avoidance behaviour of the soil invertebrates Enchytraeus crypticus and Folsomia candida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165955. [PMID: 37536601 DOI: 10.1016/j.scitotenv.2023.165955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Research on nanotechnology with applications in agriculture has been gathering attention because it may achieve a good balance between agricultural production and environmental integrity. Among the vast nanomaterials, layered double hydroxides (LDHs) are a promising solution for supplying crops with macro- and/or micronutrients. Still, little is known about their safety implications for non-target organisms, such as soil invertebrates. The habitat function of soils might be impacted by potential stressors, which can be assessed through avoidance behaviour tests. This study aimed to assess the effect of two innovative agriproducts, Zn-Al-NO3 LDH and Mg-Al-NO3 LDH, on the avoidance behaviour of the enchytraeid Enchytraeus crypticus and the collembolan Folsomia candida, over time. Simultaneously, Zn and Mg potential release from LDHs to soil was evaluated. Overall, the behaviour of soil invertebrates differed between species, with enchytraeids being more sensitive to LDHs-treated soils than collembolans, possibly explained by their different physiological traits. The behaviour of soil organisms also depended on the LDH structural composition and was time-variable. Soil treated with Zn-Al-NO3 LDH was perceived as less favourable compared to Mg-Al-NO3 LDH, which was preferred to clean soil at most tested concentrations. LDHs toxicity was partly, but not exclusively, related to Zn and Mg release. Cations release over time was demonstrated in the chemical assessment. Still, LDHs toxicity to soil invertebrates decreased as increasing AC50 values were derived over time. Slower dissolution over time might explain the decrease in toxicity. Our study demonstrates that both soil invertebrates could sense LDHs in soil and eventually adapt their behaviour by avoiding or preferring, according to the type and level of LDH present.
Collapse
Affiliation(s)
- C Malheiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Prodana
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - D N Cardoso
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - R G Morgado
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - S Loureiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Martins MR, Zanatta MCK, Ferreira WG, Poletti ECC, Pires MSG. Ecotoxicological assessment of natural soil amended with sewage sludge: the impacts on soil edaphic organisms and microbial community. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1325. [PMID: 37845580 DOI: 10.1007/s10661-023-11953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Sewage sludge usage as agricultural soil amendment is a well-known practice employed worldwide. However, certain components may pose risks to the soil ecosystem. For a better verification of the potential adverse effects on the soil biota, biological assays have become an indispensable tool for an accurate understanding of the residue's behavior on soil, as well as its potential toxicity. Accordingly, to properly assess the effects of natural tropical soil (Oxisoil) amended with sewage sludge, we conducted toxicological tests with edaphic organisms (Enchytraeus crypticus and Folsomia candida) and microbial biomass (through respirometric assessment). Results indicate that E. crypticus and F. candida present similar reproduction sensitivity behavior to sewage sludge. For the microbiological analysis, the results suggest that microbial activity was stimulated by sludge application. For further evaluation of respiration of the microbial community and CO2 stabilization values behavior, Ford-Walford modeling was applied and presented limit values for sludge application in soil for 1.5 g kg-1 and 15.0 g kg-1 of, approximately, 55 mg and 88 mg, respectively. CO2 releases were faster and reached stability within 18 weeks for the soil with higher sludge content (15.0 g kg-1 of dry soil). In contrast, CO2 releases were slower for the soil with lower sludge content (1.5 g kg-1 of dry soil), and until the experiment's final period (21 weeks) respiration behavior did not reach stability. This study indicates that the stabilized sewage sludge, at the considered recommended application rate, presents a low toxicity risk for the studied bioindicators, being suitable for agricultural use.
Collapse
|
7
|
Liu G, Gu X, Wu J, Li H, Su L, Chen M, Chen S, Liu Y. The interaction effects of biodegradable microplastics and Cd on Folsomia candida soil collembolan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57041-57049. [PMID: 36930309 DOI: 10.1007/s11356-023-26213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
In real-field soil conditions, multiple chemicals exposure may be the real scenario for soil biota. The co-occurrence of microplastics (MPs) and cadmium (Cd) is common in soils, which may pose a potential risk to soil ecosystems. Degradable microplastics are producing more MPs, and the potential effects on soil ecosystems are unknown. Therefore, a standard soil animal collembolan Folsomia candida was used to evaluate the single and interaction effects of biodegradable MPs (PLA) and Cd. The results showed that single and co-biodegradable PLA and Cd all had negative influences on the survival, reproduction, and growth of F. candida, and the effects intensified with PLA concentrations. The survival rate, reproduction rate, adult body length, and juvenile body length decreased by 20.0%, 24.2%, 22.9%, and 32.2% at MPs-100 treatment. But combined PLA and Cd alleviated the toxicity of single Cd on F. candida at lower PLA concentrations. The number of juveniles increased by 29.3%, the survival rate increased by 7.52%, the adult body length increased by 11.7%, and the juvenile body length increased by 19.0% at MPs-1 + Cd than single Cd treatment. Biochemical assays on antioxidant enzymes had the same results. Antioxidant enzymes CAT and POD were more sensitive than SOD. CAT and POD activities were induced quickly at shorter exposure periods, and MP treatment thus may be promising biomarkers on soil collembolan for soil MP exposure. PLA is degraded with time in soils; therefore, the long-term effects of co-MPs and Cd in soils are suggested to be further studied.
Collapse
Affiliation(s)
- Guoqiang Liu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Xuanzhu Gu
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Wu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Haidong Li
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Lianghu Su
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Mei Chen
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Sujuan Chen
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Yonghua Liu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China.
| |
Collapse
|
8
|
Ozturk I, Ozkul F, Topuz E. The effect of polystyrene microplastic and biosolid application on the toxicity and bioaccumulation of cadmium for Enchytraeus crypticus. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:489-500. [PMID: 35932184 DOI: 10.1002/ieam.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Plastics smaller than 5 mm that end up in a soil environment are known as microplastics (MPs). Microplastics have become a common contaminant in agricultural areas in addition to metals. However, the effect of cadmium (Cd) on soil organisms has not been clearly defined in the presence of MPs. In addition to MPs, biosolid application as a soil amendment in agricultural lands is also leading to shifts in soil conditions, such as the concentrations of nutrients and organic matter. Therefore, the aim of this study is to investigate the toxicity and bioaccumulation of Cd for Enchytraeus crypticus in the presence of polystyrene (PS)-MPs and biosolids to provide insight into their possible interactions. The lethal toxic concentration (LC50) for Cd was higher than 650 mg Cd/kg dry soil for all conditions. The presence of PS-MPs increased the toxicity of Cd for which EC50 was 102 and 38 mg Cd/kg dry soil without and with Cd, respectively, which may be the result of an increased exposure rate through adsorption of Cd on PS-MPs. On the contrary, the presence of biosolids decreased the toxicity of Cd where EC50 was 193 and 473 mg Cd/kg dry soil for the sets applied with 0.6 and 0.9 g biosolids, respectively. Coexistence of biosolids and PS-MPs decreased the reproduction toxicity of Cd, which is similar to the biosolid effect (EC50 is 305 mg Cd/kg dry soil). Bioaccumulation of Cd only positively correlated with its initial concentration in soil and was not affected by the presence of PS-MPs or biosolids. Integr Environ Assess Manag 2023;19:489-500. © 2022 SETAC.
Collapse
Affiliation(s)
- Irem Ozturk
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Fatma Ozkul
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Emel Topuz
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
9
|
Zheng Y, Zhou K, Tang J, Liu C, Bai J. Impacts of di-(2-ethylhexyl) phthalate on Folsomia candida (Collembola) assessed with a multi-biomarker approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113251. [PMID: 35121260 DOI: 10.1016/j.ecoenv.2022.113251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is extensively used as an additive to produce plastics, but it may damage non-target organisms in soil. In this study, the effects of DEHP on Folsomia candida in terms of survival, reproduction, enzyme activities, and DNA damage were investigated in spiked artificial soil using a multi-biomarker strategy. The 7-day LC50 (median lethal concentration) and 28-day EC50 (median effect concentration) values of DEHP were 1256.25 and 19.72 mg a.i. (active ingredient) kg-1 dry soil, respectively. Biomarkers involved in antioxidant defense including catalase (CAT-catalase), glutathione S-transferases (GST), detoxifying enzymes including acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and peroxidative damage (LPO-lipid peroxide) were also measured (EC10, EC20, and EC50) after exposure for 2, 4, 7, and 14 days. The Comet assay was also applied to assess the level of genetic damage. The activity of CAT and LPO was drastically enhanced by the highest dose (EC50) of DEHP on day two. The activities of GST and AChE in DEHP treatment groups were found to be blocked. In contrast, the activity of CYP450 was significantly enhanced compared to the respective control groups during the first four days of incubation. The Comet assay in F.candida demonstrated that DEHP (EC50) could induce DNA damage. The obtained multi-biomarker data were analyzed using an integrated biomarker response (IBR) index, indicating that limited-time exposure triggered higher stress than long-term exposure at low concentrations of DEHP. These results demonstrate that DEHP may cause biochemical and genetic toxicity to F. candida, which illustrated the potential risks of DEHP in the soil environment and might affect soil ecosystem processes. Further studies are necessary to elucidate the toxic mechanisms of DEHP on other non-target organisms in soil.
Collapse
Affiliation(s)
- Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Kedong Zhou
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianquan Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| |
Collapse
|
10
|
Zhang Y, Li Z, Ke X, Wu L, Christie P. Multigenerational exposure of the collembolan Folsomia candida to soil metals: Adaption to metal stress in soils polluted over the long term. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118242. [PMID: 34600067 DOI: 10.1016/j.envpol.2021.118242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Multigenerational tests provide a comprehensive assessment of the long-term toxicity of pollutants. Here, the multigenerational effects of soil metal contamination on Folsomia candida were investigated over five generations (generations 1-5: F1-F5). Nine soils with varying physicochemical properties and degrees of metal pollution were studied. The selected endpoints were survival, reproduction, body size and body metal concentrations. F. candida was cultured only up to the fifth generation with high reproduction in contaminated acid soils where reproduction was at least 5 times that in neutral soils and 20 times that in calcareous soils. Correlation analysis indicated that soil pH (68.9% contribution) and cation exchange capacity (CEC, 15.4% contribution) were more important factors than pollution level affecting the reproduction of F. candida. No significant difference was observed in adult survival or adult length over five generations. The highest collembolan body Cd concentrations in soils A1-A3 were 3.15, 2.93 and 3.23 times those in F1, with similar results for body Pb. A similar trend in reproduction and juvenile length was observed with an initial decrease (p < 0.05) and then an increase (p < 0.05) over the generations in each acid soil; the opposite trend occurred in the changes in body cadmium (Cd) and lead (Pb) concentrations which increased initially (p < 0.05) and then decreased (p < 0.05) compared to the original concentrations of the first generation. The results indicate that F. candida can adapt to soil metal stress during multigenerational exposure and the adaption energy may be related to a tradeoff between reproduction or growth of juveniles and the detoxification of metals accumulated in the body. Soil properties, especially pH and CEC, had a substantial influence on the long-term survival of the collembolan in the metal-polluted soils.
Collapse
Affiliation(s)
- Yabing Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Ke
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
11
|
Li S, Li J, Li Z, Ke X, Wu L, Christie P. Toxic effects of norfloxacin in soil on fed and unfed Folsomia candida (Isotomidae: Collembola) and on gut and soil microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147793. [PMID: 34034166 DOI: 10.1016/j.scitotenv.2021.147793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Soils contaminated with antibiotics may exert effects on soil-dwelling animals. A systematic ecological toxicity assessment of norfloxacin on the soil collembolan Folsomia candida (F. candida) was therefore conducted in soil and Petri dish systems with and without feeding at the population, individual and cellular levels. The indicators survival, reproduction, antioxidant enzyme activities peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), malondialdehyde (MDA) contents and gut microbiota were studied. The surrounding soil microbiota were also investigated because F. candida can ingest soil microbiota that may have effects on the gut microbiota. In general, the toxicity of norfloxacin to F. candida in contaminated soil without food addition was higher than in contaminated soil with food addition. Norfloxacin had little effect at population and individual levels but antioxidant enzyme activities changed significantly in treatments with longer exposure times or higher norfloxacin concentrations. CAT was more sensitive than SOD or POD. The diversity indices and composition at phylum level of the gut microbiota showed little change. However, the operational taxonomic units in the gut decreased in the presence of norfloxacin. The relative abundance of Wolbachia, the predominant bacterial genus in the gut, decreased significantly with increasing soil norfloxacin concentration. Wolbachia may therefore be a promising bioindicator in the assessment of norfloxacin pollution of soils at environmental concentrations.
Collapse
Affiliation(s)
- Simin Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xin Ke
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
12
|
Queirós L, Monteiro L, Marques C, Pereira JL, Gonçalves FJM, Aschner M, Pereira P. Measurement of the Effects of Metals on Taxis-to-Food Behavior in Caenorhabditis elegans. Curr Protoc 2021; 1:e131. [PMID: 33974358 DOI: 10.1002/cpz1.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chemosensation in nematodes is linked to processes that affect their ability to survive, such as the search for food and the avoidance of toxic substances. Since the 1970s, numerous studies have assessed chemotaxis in the nematode species Caenorhabditis elegans, focusing on a multitude of agents, including bacteria (food), ions, salts, hormones, volatile organic compounds, and, to a lesser extent, metal-contaminated medium/food. The few studies evaluating metal exposure have reported a variety of responses (neutral, attraction, avoidance), which generally appear to be contaminant and/or concentration specific. Differences in experimental designs, however, hinder appropriate comparison of the findings and attainment of firm conclusions. Therefore, we herein propose and describe a detailed protocol for the assessment of the effects of metals on taxis-to-food behavior in C. elegans. Distinct approaches are proposed in two innovative stages of testing to (1) screen metals' effects on taxis-to-food behavior and (2) classify the behavioral response as attraction/avoidance/indifference or preference. Use of such a standard protocol will allow for easy comparison across studies and direct interpretation of results. Findings using this model system can contribute to a deeper understanding of the real risks of metal contamination to nematodes and how such contaminants could impact ecosystems in general, given the key environmental roles that these organisms play. © 2021 Wiley Periodicals LLC. Basic Protocol: Assessing the effects of metal contamination on taxis-to-food behavior in Caenorhabditis elegans Support Protocol 1: Synchronization of C. elegans by hand-picking gravid worms Support Protocol 2: Synchronization of C. elegans by using a bleaching solution.
Collapse
Affiliation(s)
- Libânia Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Luana Monteiro
- Marine Biology Research Group, Biology Department, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Carlos Marques
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Patrícia Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Buch AC, Niemeyer JC, Marques ED, Silva-Filho EV. Ecological risk assessment of trace metals in soils affected by mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123852. [PMID: 33264928 DOI: 10.1016/j.jhazmat.2020.123852] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/15/2020] [Accepted: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Environmental impacts caused by mine dam ruptures or inappropriate tailing depositions represent a global concern. An ecological risk assessment was performed in 18 areas affected by the collapse of a major mining dam in southeastern Brazil, in two monitoring periods (2015 and 2018). In these areas, pedogeochemical surveys, and ecological risk levels were determinate. In addition, ecotoxicological assays with Proisotoma minuta (Collembola) were carried out in laboratory. Soil screening values indicated that all contaminated areas were above regional reference values for soil quality for at least one metal (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), likewise exceeding threshold values for potential ecological and human health risks. In two monitoring years, significant ecotoxicity in the avoidance and reproduction of P. minuta (> 60 % and >80 %, respectively) were evidenced in most soils; and lethal responses in some areas like Córrego Novo, Governador Valadares and Tumiritinga. Results suggest changes in soil physical-chemical properties due to tailing deposition, thus affecting soil dwellers. This study can elucidate the use of appropriate tools to ecological risk assessments, helping to identify the priority areas for defining remediation and monitoring strategies.
Collapse
Affiliation(s)
- Andressa Cristhy Buch
- Postgraduate Environmental Geochemistry Program, Fluminense Federal University, Outeiro São João Baptista, s/n., Centro, 24020-141, Niterói, RJ, Brazil.
| | - Júlia Carina Niemeyer
- Postgraduate Program in Agricultural and Natural Ecosystems, Federal University of Santa Catarina (UFSC), Center of Curitibanos, Rod. Ulysses Gabordi, Km 3, 89520-000, Curitibanos, SC, Brazil
| | - Eduardo Duarte Marques
- Researcher of Company of Research of Mineral Resources (CPRM) - Service Geological Survey of Brazil, Av. Brasil, 1731, Funcionários, 30140-002, Belo Horizonte, MG, Brazil
| | - Emmanoel Vieira Silva-Filho
- Postgraduate Environmental Geochemistry Program, Fluminense Federal University, Outeiro São João Baptista, s/n., Centro, 24020-141, Niterói, RJ, Brazil
| |
Collapse
|
14
|
Li S, Jia M, Li Z, Ke X, Wu L, Christie P. Ecotoxicity of arsenic contamination toward the soil enchytraeid Enchytraeus crypticus at different biological levels: Laboratory studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111218. [PMID: 32927160 DOI: 10.1016/j.ecoenv.2020.111218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The ecotoxicity of arsenic (As) contamination toward small soil fauna living in soil pore water such as soil enchytraeids has rarely been studied but is important in the assessment of soil pollution. Here, the endpoints of As ecotoxicity to Enchytraeus crypticus were studied at three biological levels, i.e., individual (morphology and body tissue As concentrations), population (survival, reproduction and growth) and cell biochemistry (antioxidant enzymes CAT, POD and SOD and peroxidation malondialdehyde MDA). Contact filter paper tests without soil and single species tests with OECD artificial and field soils were conducted. Arsenic contamination resulted in severe morphological pathologies in E. crypticus and the symptoms and degree of damage increased gradually with increasing As concentration and exposure time up to 48 h. The abnormal morphological effects occurred before the impairment of fecundity. The population endpoints responded to the As concentration and the EC50 values increased in the following sequence: reproduction, juvenile body weight, adult body weight, juvenile length and adult length. Changes in biochemistry parameters were induced rapidly and changed with increasing As concentration and exposure time. The activity peak values of enzymes were 3-5 times higher and the activity maximum values of MDA were 1-3 time higher than their controls. The sensitivity of enzyme activities was generally much higher than that of MDA and CAT generally showed the highest enzyme activity. The results indicate that As contamination can be very harmful to soil enchytraeids and the endpoints of the ecotoxicity tests of soil enchytraeids can be used to complement existing soil As assessment systems or may be used alone for the assessment of soil As pollution.
Collapse
Affiliation(s)
- Simin Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyun Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
15
|
Dai W, Holmstrup M, Slotsbo S, Ke X, Li Z, Gao M, Wu L. Compartmentation and effects of lead (Pb) in the collembolan, Folsomia candida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43638-43645. [PMID: 32737783 DOI: 10.1007/s11356-020-10300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The impact of soil lead (Pb) pollution on survival, growth, and reproduction of the collembolan, Folsomia candida, and Pb compartmentation in its gut and remaining body parts were studied by exposing animals to laboratory-spiked soil. The survival, growth, and reproduction of F. candida were significantly reduced by increasing soil Pb concentration. The LC50 values of survival based on total and CaCl2-extractable Pb concentration in soil were 2562 mg kg-1 and 351 mg kg-1, respectively. The EC50 values of reproduction were 1244 mg kg-1 and 48 mg kg-1, respectively. The Pb concentration in whole body, gut, and remaining body parts was significantly increased with the increase of soil Pb concentration and followed an exponential increase when the soil Pb concentration was equal to or above a threshold (1000 mg kg-1 for whole body and remaining body part, 500 mg kg-1 for gut). Below this threshold, these relationships were linear. The Pb concentration in the gut was higher than whole body and remaining body part of F. candida, and the threshold of internal Pb concentration at which F. candida can compensate was in the range 7-13 mg Pb kg-1 dry animal (corresponding to soil Pb concentration 500-1000 mg Pb kg-1 dry soil). The results indicate that reproduction of F. candida was a more sensitive indicator of lead toxicity than survival and growth. Pb was mainly accumulated in the gut of F. candida. We discuss the internal Pb concentration as an indicator of adverse effects in the risk assessment of soil Pb pollution.
Collapse
Affiliation(s)
- Wencai Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Martin Holmstrup
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ming Gao
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
16
|
Xia SQ, Zhao HT, Wu YF, Han SW, Mi WH, Kang YJ, Hu J, Feng K. Effect of feeding conditions on the degradation of tetracycline in sewage sludge by earthworm. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Li Y, Guo P, Liu Y, Su H, Zhang Y, Deng J, Wu Y. Effects of sulfur on the toxicity of cadmium to Folsomia candida in red earth and paddy soil in southern Fujian. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121683. [PMID: 31771886 DOI: 10.1016/j.jhazmat.2019.121683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 05/23/2023]
Abstract
Sulfur has been shown to mitigate the toxic effects of metals on soil organisms. Here we report the effects of sulfur on cadmium toxicity to the collembolan Folsomia candida in soil, including its effects on glutathione (GSH) level, catalase (CAT) activity and metallothionein (MT) content. Following sulfur treatment, catalase, glutathione and metallothionein activities were all significantly increased in cadmium-contaminated soil, and as the cadmium concentration increased, the activities decreased. In addition, because of the reducing effects of pH and organic matter on cadmium bioavailability, the bioavailable cadmium varied among soils of different pH values and organic matter contents, causing the catalase activity, glutathione content and metallothionein levels of F. candida to vary among soils. Our study suggests that sulfur can affect the toxicity of certain concentrations of cadmium and that soil properties are very important to consider. This study provides insight into the effects of sulfur application on soil animals.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China.
| | - Yongjun Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Haitao Su
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Yuxuan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Jun Deng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Yanmei Wu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
18
|
Lin X, Sun Z, Zhao L, Zhou C, Wu Z, Hou H. The toxicity thresholds of metal(loid)s to soil-dwelling springtail Folsomia candida-A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:632-645. [PMID: 31132559 DOI: 10.1016/j.ecoenv.2019.04.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Increasing concentrations of metals in soil have posed a serious threat to the soil environment. The control and evaluation of soil metal hazards demand the establishment of soil ecological criteria, which is mainly based on the obtainment of toxicity thresholds. As the most typical representative of soil-dwelling springtails, Folsomia candida performs numerous essential ecological functions in soil and has been extensively used to investigate metal toxicity effects and thresholds. This review outlined the current state of knowledge on the metal toxicity thresholds to Folsomia candida, including (1) toxicity thresholds of soil metals for the different endpoints, (2) the influence factors of metal toxicity thresholds including the test conditions, the chemical forms of metal, the soil physicochemical properties, aging time and leaching, (3) the bioavailable fractions predicting metal toxicity thresholds, (4) the internal threshold of metals. To conclude, several recommendations for future research are given to obtain the more reliable toxicity thresholds and further supplement the toxicity data of metals to Folsomia candida.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Changzhi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Zhihao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Lin X, Sun Z, Zhao L, Ma J, Wu Z, Zhou C, Li X, Hou H. The toxicity of exogenous nickel to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:475-483. [PMID: 30856559 DOI: 10.1016/j.ecoenv.2019.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Nickel (Ni) is a toxic metal, but studies on Ni toxicity to soil-dwelling springtail are fairly limited, and did not consider the effects of various soil properties and long aging time. To address this, the chronic toxicity of Ni to model organism-Folsomia candida in relation to soil properties and aging time were evaluated in the laboratory study. The results showed that compared to the soils aged only for 7 d, the concentrations causing 50% mortality (LC50) and inhibiting 50% reproduction (EC50) basing measured total Ni in four soils aged for 120 d increased by 1.30-1.94 fold and 1.27-1.82 fold, respectively. Furthermore, the aging effects significantly correlated with soil pH. The toxicity values of Ni differed in ten soils aged for 120 d, the LC50 values were 279-4025 mg/kg and the EC50 values were 133-1148 mg/kg. When calculating the toxicity values basing water soluble and CaCl2 extracted Ni, the variations in LC50 values between ten soils decreased, while the variations in EC50 values increased. Regression analysis indicated that soil pH was the most important single factor predicting soil Ni toxicity to springtail, the combination of soil pH and OM could best explain Ni toxicity variance in ten soils (89.1% of the variance in LC50 values and 89.6% of the variance in EC50 values).
Collapse
Affiliation(s)
- Xianglong Lin
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Zhihao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Changzhi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Xing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Hong Hou
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| |
Collapse
|
20
|
Lin X, Sun Z, Zhao L, Ma J, Li X, He F, Hou H. The toxicity of exogenous arsenic to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:530-538. [PMID: 30641314 DOI: 10.1016/j.ecoenv.2018.12.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is a toxic metalloid, but studies on As toxicity to soil-dwelling springtails are fairly limited, and did not consider the effects of various soil properties and long aging time. To address this, the toxicity of As to model organism-Folsomia candida were evaluated in the laboratory studies. The results showed that compared to the soils aged only for 15 d, the concentrations inhibiting 50% reproduction (EC50) significantly increased by 1.3- to 2.0-fold in four soils aged for 150 d, the concentrations causing 50% mortality (LC50) were higher than the highest test concentration in the most soils. Furthermore, the aging effects correlated significantly with soil free Fe oxides contents. The toxicity of As differed in ten soils aged for 150 d, the LC50 were 320-> 1280 mg/kg in acute test and the EC50 were 67-580 mg/kg in chronic test. Regression analysis indicated that soil clay was the most important single factor predicting soil As toxicity to reproduction, explaining 89% of the variance in EC50 values. Soil pH, free Fe oxides and Al oxides could also well explain the toxicity variance (> 65%), indicating that As sorption was a key factor controlling its toxicity.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Xing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Fei He
- College of Resources and Environment Yunnan Agricultural University, Kunming 650000, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Gainer A, Akre R, Owojori OJ, Siciliano SD. Protecting vulnerable individuals in a population: is the avoidance response of juvenile soil invertebrates more sensitive than the adults response? CHEMOSPHERE 2019; 220:658-667. [PMID: 30599324 DOI: 10.1016/j.chemosphere.2018.12.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Juveniles are generally considered more sensitive to contaminants than adults. However, it is unknown if the behavioral responses of juvenile soil invertebrates is different than the adults. The absence of juvenile or adult soil invertebrates in contaminated soils due to avoidance adversely impacts the soil quality. Here, we assessed the avoidance response in two life stages (juvenile and adult) of three standardized soil toxicity test invertebrates (Folsomia candida, Enchytraeus crypticus and Eisenia fetida) exposed to phenanthrene, copper and sodium chloride contaminated soil. Interestingly, we found the juvenile's avoidance response could be more sensitive, less sensitive and the same as the adult's avoidance response, depending on the contaminant and test species. The juvenile avoidance response of E. fetida to sodium chloride, and E. crypticus and E. fetida to copper was more sensitive than the adult's response. In contrast, the avoidance response of juvenile F. candida to sodium chloride was less sensitive than the adult's response. No life stage differences were observed in the avoidance response of E. crypticus individuals exposed to sodium chloride, F. candida individuals exposed to copper and E. fetida individuals exposed to phenanthrene. Although life stage differences in avoidance responses were evident for some species and contaminants, it was not consistent. In terms of avoidance, the assumptions that juveniles are the most sensitive individuals in a population is not always true.
Collapse
Affiliation(s)
- Amy Gainer
- Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Robyn Akre
- Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Olugbenga J Owojori
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
22
|
Liu M, Xu J, Krogh PH, Song J, Wu L, Luo Y, Ke X. Assessment of toxicity of heavy metal-contaminated soils toward Collembola in the paddy fields supported by laboratory tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16969-16978. [PMID: 29626329 DOI: 10.1007/s11356-018-1864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Effects on soil Collembola of Cu, Zn, Pb, and Cd pollution from Cu smelters over 40 years were investigated in paddy fields from an area of Eastern China. We compared the field effects to those observed in single-species laboratory tests employing the hemiedaphic collembolan Folsomia candida and the epedaphic Sinella curviseta obtained from laboratory cultures and exposed to field-collected polluted soil. The results indicated that different collembolan species responded differently to the pollution in the fields and could be divided into sensitive, indifferent, and tolerant types accordingly. The abundance of sensitive species decreased as the pollution increased, but this was not the same for indifferent and tolerant species. The dominant species changed from sensitive to tolerant species as the pollution increased. The reproduction of F. candida and S. curviseta was most sensitive to the contaminated soil compared to growth and survival; the sensitivity of the two species was similar. The growth was more sensitive than the survival for F. candida but not for S. curviseta. The growth and survival of F. candida were much more sensitive than those of S. curviseta. Sensitivity of field populations of F. candida (EC10 31 [15-46]) and hemiedaphic species Folsomia quadrioculata (EC10 52 [0.7-102]) were comparable with sensitivity of the reproduction of F. candida in the single-species tests (EC10 21 [14-27]), suggesting that single-species test based on laboratory cultures and field soil could be used to link laboratory and field data and then reflect the field situation. S. curviseta could be used as an epedaphic species in single-species tests and F. quadrioculata as an indicator species for assessment of field effect.
Collapse
Affiliation(s)
- Manping Liu
- Natural History Research Center, Shanghai Natural History Museum, Shanghai Science and Technology Museum, Shanghai, 200127, China
| | - Jie Xu
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Paul Henning Krogh
- Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600, Silkeborg, Denmark
| | - Jing Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|