1
|
Costa RB, Godoi LAG, Braga AFM, Delforno TP, Bevilaqua D. Sulfate removal rate and metal recovery as settling precipitates in bioreactors: Influence of electron donors. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123622. [PMID: 33264855 DOI: 10.1016/j.jhazmat.2020.123622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 06/12/2023]
Abstract
Four down-flow structured bed bioreactors were operated targeting biological sulfate-reduction and metal recovery. Three different electron donors were tested: glycerol (R1), lactate (R2), sucrose (R3), and a blend of the previous three (R4) with an increasing copper influent load (5, 15, and 30 mg Cu2+.L-1). Copper inhibited sulfate-reduction in R1 (15 mg Cu2+.L-1) and R3 (5 mg Cu2+.L-1), but the fermentative activity was not affected. R2 and R4 were not inhibited by the copper influent concentration. R2 provided the highest sulfate reduction rate (1767.3 ± 240.1 mg SO42-.L.day-1). Nonetheless, the accumulation of settling precipitates was 22 % higher in R4 than in R2, indicating the former yielded the highest metal recovery as settling precipitates (24.8 g FSS.L-1, 25 % Fe2+, 5% Cu2+). 16S rRNA sequencing showed highest diversity of sulfate-reducing bacteria in R2. A predominance of sulfate-reducing and fermentative bacteria with more similarity was observed between microbial populations in R1 and R4, despite the difference in toxicity thresholds. Hence, the electron donor influenced not only the biological sulfate reduction, but also metal toxicity thresholds and metal recovery as settling precipitates.
Collapse
Affiliation(s)
- Rachel Biancalana Costa
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, R. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil.
| | - Leandro Augusto Gouvea Godoi
- Biological Processes Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, 1100 João Dagnone Av. - Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - Adriana Ferreira Maluf Braga
- Biological Processes Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, 1100 João Dagnone Av. - Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - Tiago Palladino Delforno
- Laboratory of Environmental Microbiology, Department of Biology, Federal University of São Carlos, Rodovia João Leme dos Santos Km 110, Sorocaba, SP, 18052-780, Brazil
| | - Denise Bevilaqua
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, R. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil
| |
Collapse
|
2
|
Costa RB, Bevilaqua D, Lens PNL. Pre-treatment and temperature effects on the use of slow release electron donor for biological sulfate reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111216. [PMID: 32858270 DOI: 10.1016/j.jenvman.2020.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic materials can be used as slow release electron donor (SRED) for biological sulfate reduction, potentially enhancing the subsequent metal sulfide precipitation. Lignocellulosic materials require a pre-treatment step in other biotechnological applications, but pre-treatment strategies for its use as a SRED for biological sulfate reduction have not yet been tested. Three pre-treatments strategies (mechanical, acid, and mechanical followed by acid pre-treatment) were tested to enhance electron donor release from brewery spent grain (BSG), and compared to a non-pre-treated control. Mechanical pre-treatment provided the highest sulfate removal rate (82.8 ± 8.8 mg SO42-.(g TVS.day)-1), as well as the highest final sulfide concentration (441.0 ± 34.4 mg.L-1) at mesophilic conditions. BSG submitted to mechanical pre-treatment was also assessed under psychrophilic and thermophilic conditions. Under mesophilic and psychrophilic conditions, both sulfate reduction and methane production occurred. Under psychrophilic conditions, the sulfate reduction rate was lower (25 ± 2.0 mg SO42-.(g TVS.day)-1), and the sulfide formation depended on lactate addition. A metal precipitation assay was conducted to assess whether the use of SRED enhances metal recovery. Zinc precipitation and recovery with chemical or biogenic sulfide from the BSG batches were tested. Sulfide was provided in a single spike or slowly added, mimicking the effect of SRED. ZnS was formed in all conditions, but better settling particles were obtained when sulfide was slowly added, regardless of the sulfide source.
Collapse
Affiliation(s)
- Rachel B Costa
- National University of Ireland, University Road, H91 TK33, Galway, Ireland; Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, R. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil.
| | - Denise Bevilaqua
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, R. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil
| | - Piet N L Lens
- National University of Ireland, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
3
|
Gupta A, Sar P. Role of cost-effective organic carbon substrates in bioremediation of acid mine drainage-impacted soil of Malanjkhand Copper Project, India: a biostimulant for autochthonous microbial populations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27407-27421. [PMID: 31522400 DOI: 10.1007/s11356-019-06293-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Development of an efficient bioremediation strategy for the mitigation of low pH (3.21), high dissolved SO42- (6285 mg/L), and Fe (7292 mg/kg)-rich acid mine drainage-impacted soil (AIS) was investigated through amendment of readily available organic carbon substrates (rice husk, compost, leaf litter, and grass clippings). An organic carbon mixture (OCM) formulated by mixing the test substrates was used to biostimulate microbial processes (SO42-/Fe3+reduction) necessary for efficient attenuation of the hazards imposed by AIS. OCM amendment in calcium carbonate-treated AIS enhanced reductive processes and removed dissolved SO42- and Fe3+ considerably raising the pH close to neutrality. 16S rRNA gene amplicon sequencing performed with total DNA and RNA elucidated the microbial population dynamics of treated AIS. Metabolically active populations comprised of fermentative (Clostridium sensu stricto 1 and Fonticella), iron-reducing (Acidocella, Anaeromyxobacter, and Clostridium sensu stricto 1), and sulfate-reducing (Desulfovibrio, Desulfotomaculum, Desulfosporosinus, and Desulfobacteraceae) bacteria. Microbial guilds obtained highlighted the synergistic role of cellulolytic, fermentative, and SO42-/Fe3+-reducing bacteria in attenuation of hazardous contaminants. Quantitative PCR analysis well supported the role of OCM in stimulating the indigenous bacterial populations, including those harboring the dissimilatory sulfite reductase (dsrB) gene and involved actively in SO42- reduction. The study demonstrated the suitability of locally available organic substrates as a low-cost and efficient biostimulation agent for in situ bioremediation of acid mine drainage (AMD)-impacted soil system.
Collapse
Affiliation(s)
- Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
4
|
Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. WATER 2020. [DOI: 10.3390/w12072071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discharge of aquaculture wastewater and the excessive selenium in aquaculture effluent caused by selenium addition to aquatic feed are posing a serious risk for the marine environment. In this study, batch tests were carried out to investigate the feasibility of utilizing algal–bacterial biofilm for the treatment of selenium-rich aquaculture wastewater. The effects of four different types of commercial biofilm carriers on the attached growth of biofilms and the contaminant removal capacity were examined. The braided cotton biofilm carrier had the best performance on biofilm growth, while in an exponential growth period the dry weight density of the biofilm was above 2.0 g L−1. By utilizing the braided cotton carrier with a hydraulic retention time (HRT) of 6 days, the removal rate of N and P from the raw aquaculture wastewater was 88.5 ± 6.2% and 99.8 ± 0.2%, respectively. After that, the effects of different initial wastewater load ratios (IWLR) and HRT on the effluent quality of the treatment process were studied. The decrease in IWLR and the extension of HRT could improve the treatment performance. The effluent N, P and Se concentrations in the group with 50% IWLR and 6-day HRT were 0.75 ± 0.10 mg L−1, 0.015 ± 0.02 mg L−1, 35.2 ± 3.2 μg L−1, respectively, indicating an effective removal of the main contaminants. The algal–bacterial biofilm harvested from the batch test was rich in N, P and Se, where the Se content was 21.8 ± 3.4 mg kg−1, which has the potential to be used as an Se-rich biofertilizer.
Collapse
|
5
|
Wei X, Zhang S, Shimko J, Dengler RW. Mine drainage: Treatment technologies and rare earth elements. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1061-1068. [PMID: 31291681 DOI: 10.1002/wer.1178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 06/09/2023]
Abstract
The recent research and development on mine drainage published in 2018 was summarized in this annual review. In particular, this review was focused on two main aspects of mine drainage: (a) advances in treatment technologies and (b) rare earth elements in mine drainage and its recovery. The first section covers passive treatment technologies and active treatment options, including physiochemical treatment and biological treatment. The second section includes the characterization of rare earth elements in mine drainage and recovery technologies. Due to the importance of rare earth elements and the growing interest in their recovery from mine drainage, rare earth elements are reported as a separate section for the first time in this review. PRACTITIONER POINTS: Advances in treatment technologies for mine drainage are reviewed. Rare earth elements in mine drainage and its recovery are summarized. Reviewed technologies include passive, active, advanced and novel processes.
Collapse
Affiliation(s)
- Xinchao Wei
- Department of Physics and Engineering, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Shicheng Zhang
- Department of Environmental Science and Technology, Fudan University, Shanghai, China
| | | | - Robert W Dengler
- Municipal Services Group, Gannett Fleming, Inc., Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|
7
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
8
|
Reyes-Alvarado LC, Habouzit F, Rene ER, Santa-Catalina G, Escudie R, Bernet N, Lens PNL. Effect of ammonium, electron donor and sulphate transient feeding conditions on sulphidogenesis in sequencing batch bioreactors. BIORESOURCE TECHNOLOGY 2019; 276:288-299. [PMID: 30641327 DOI: 10.1016/j.biortech.2018.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
This work aimed to study the effect of transient feeding conditions on sulphidogenesis in 8 sequencing batch bioreactors (SBR). SBR L1 and H1, operated under steady-state conditions were used as the control reactors, while four SBR were tested under transient feeding conditions using moderate (L2 and L3, feast and famine: 2.5 and 0 g SO42-·L-1) and high (H2 and H3, feast and famine: 15 and 0 g SO42-·L-1) loads. The sulphate removal efficiency (RE) was ≥90% in SBR L2, L3 and H1. The NH4+ famine conditions resulted in a higher sulphate RE (≥40% H3) compared to feast conditions (≤20% H2). Besides, the sulphidogenic first-order kinetic constant was 4% larger and the use of electron donor was 16.6% more efficient under NH4+ famine conditions. Sulphidogenesis is robust to transient feeding conditions, but not when applying high loading rates (SBR H2 and H3).
Collapse
Affiliation(s)
- Luis C Reyes-Alvarado
- LBE, Univ Montpellier, INRA, 102 Avenue des Etangs, 11100 Narbonne, France; UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Frédéric Habouzit
- LBE, Univ Montpellier, INRA, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands.
| | | | - Renaud Escudie
- LBE, Univ Montpellier, INRA, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Nicolas Bernet
- LBE, Univ Montpellier, INRA, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|