1
|
Mahamuni G, Rutherford J, Davis J, Molnar E, Posner JD, Seto E, Korshin G, Novosselov I. Excitation-Emission Matrix Spectroscopy for Analysis of Chemical Composition of Combustion Generated Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8198-8209. [PMID: 32479734 DOI: 10.1021/acs.est.0c01110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Analysis of particulate matter (PM) is important for the assessment of human exposures to potentially harmful agents, notably combustion-generated PM. Specifically, polycyclic aromatic hydrocarbons (PAHs) found in ultrafine PM have been linked to cardiovascular diseases and carcinogenic and mutagenic effects. In this study, we quantify the presence and concentrations of PAHs with lower molecular weight (LMW, 126 < MW < 202) and higher molecular weight (HMW, 226 < MW < 302), i.e., smaller and larger than Pyrene, in combustion-generated PM using excitation-emission matrix (EEM) fluorescence spectroscopy. Laboratory combustion PM samples were generated in a laminar diffusion inverted gravity flame reactor (IGFR) operated on ethylene and ethane. Fuel dilution by Ar in 0% to 90% range controlled the flame temperature. The colder flames result in lower PM yields however, the PM PAH content increases significantly. Temperature thresholds for PM transition from low to high organic carbon content were characterized based on the maximum flame temperature (Tmax,c ∼ 1791 to 1857 K) and the highest soot luminosity region temperature (T*c ∼ 1600 to 1650K). Principal component regression (PCR) analysis of the EEM spectra of IGFR samples correlates to GCMS data with R2 = 0.988 for LMW and 0.998 for HMW PAHs. PCR-EEM analysis trained on the IGFR samples was applied to PM samples from woodsmoke and diesel exhaust, the model accurately predicts HMW PAH concentrations with R2 = 0.976 and overestimates LMW PAHs.
Collapse
Affiliation(s)
- Gaurav Mahamuni
- University of Washington, Mechanical Engineering, Seattle, Washington 98195, United States
| | - Jay Rutherford
- University of Washington, Chemical Engineering, Seattle, Washington 98195, United States
| | - Justin Davis
- University of Washington, Molecular Engineering, Seattle, Washington 98195, United States
| | - Eric Molnar
- University of Washington, Mechanical Engineering, Seattle, Washington 98195, United States
| | - Jonathan D Posner
- University of Washington, Mechanical Engineering, Seattle, Washington 98195, United States
- University of Washington, Chemical Engineering, Seattle, Washington 98195, United States
| | - Edmund Seto
- University of Washington, Environmental and Occupational Health Sciences, Seattle, Washington 98195, United States
| | - Gregory Korshin
- University of Washington, Civil and Environmental Engineering, Seattle, Washington 98195, United States
| | - Igor Novosselov
- University of Washington, Mechanical Engineering, Seattle, Washington 98195, United States
- University of Washington, Environmental and Occupational Health Sciences, Seattle, Washington 98195, United States
- University of Washington, Institute for Nano-Engineered Systems, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Sbai SE, Farida B. Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18411-18420. [PMID: 31049860 DOI: 10.1007/s11356-019-05012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Oxidation flow reactors (OFRs) are increasingly used to study the formation and evolution of secondary organic aerosols (SOA) in the atmosphere. The OH/HO2 and OH/O3 ratios in OFRs are similar to tropospheric ratios. In the present work, we investigated the production of SOA generated by OH oxydation and ozonolysis of limonene in OFR as a function of OH exposure and O3 exposure. The results are compared with those obtained from the simulation chambers. The precursor gas is exposed to OH concentrations ranging from 2.11 × 108 to 1.91 × 109 molec cm-3, with an estimated exposure time in the OFR of 137 s. In the environmental chambers, the precursor was oxidized using OH concentrations between 2.10 × 106 and 2.12 × 107 molec cm-3 over exposure times of several hours. In the overlapping OH exposure region, the highest SOA yields are obtained in the OFR, which is explained by the ozonolysis of limonene in the OFR. However, the yields decrease with the increase of OHexp in both systems.
Collapse
Affiliation(s)
- Salah Eddine Sbai
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON,2 Avenue Albert Einstein, 69100, Lyon, France.
- Department of physics, Laboratoires de physique des hauts Energies Modélisation et Simulation, Mohammed V University in Rabat, Rabat, Morocco.
| | - Bentayeb Farida
- Department of physics, Laboratoires de physique des hauts Energies Modélisation et Simulation, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Day-Night Differences, Seasonal Variations and Source Apportionment of PM10-Bound PAHs over Xi’an, Northwest China. ATMOSPHERE 2018. [DOI: 10.3390/atmos9020062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|