1
|
Luo X, Du H, Zhang X, Yang Y. Amine-functionalized magnetic biochars derived from invasive plants Alternanthera philoxeroides for enhanced efficient removal of Cr(VI): performance, kinetics and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78092-78106. [PMID: 35689769 DOI: 10.1007/s11356-022-20987-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, novel magnetic biochars derived from Alternanthera philoxeroides and modified by different amines (hexanediamine, melamine, and L-glutathione) were successfully prepared by hydrothermal carbonization and employed as an efficient adsorbent for Cr(VI). When pH = 2.0, T = 25 °C, c0 = 100 mg/L, and the dosage of biochars is 0.05 g, the maximum adsorption capacity of Cr(VI) by pristine biochar (BAP) was 42.47 mg/g and modified biochars (MFBAP, MEBAP, LBAP) was 80.58, 62.26, and 55.66 mg/g, respectively. It was found that hexanediamine and melamine could enhance the SBET of biochars, while L-glutathione could reduce its SBET, which could be supported by BET measurement and SEM images. Adsorption kinetics and isotherm studies showed that the Cr(VI) adsorption process of MFBAP followed Elovich kinetic model and Langmuir isotherm, respectively, which means that it was mainly a chemical adsorption process. The characterization results proved that -NH2 derived from amines plays a significant role in removing Cr(VI), which is mainly degraded by complexation reaction, electrostatic interaction, and reduction. In sum, the biochar modified by amines has excellent Cr(VI) adsorption performance, highly enhanced SBET, and excellent recyclability, which is a promising candidate for solving the problem of invasive plants and wastewater treatment.
Collapse
Affiliation(s)
- Xin Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Haiying Du
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| | - Xiaochao Zhang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Yuhang Yang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| |
Collapse
|
2
|
Mao W, Wu P, Zhang Y, Lai K, Dong L, Qian X, Zhang Y, Zhu J. Manganese oxide-modified biochar derived from discarded mushroom-stick for the removal of Sb(III) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49322-49334. [PMID: 35220532 DOI: 10.1007/s11356-021-18276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
In this study, discarded mushroom-stick, which is widely available, was selected as a precursor to prepare MnO2-modified biochar (MBC) for Sb(III) removal. Several characterisation methods (SEM, BET, XPS, FT-IR, and XRD) were used to explore the mechanisms of antimony adsorption onto MBC. The results showed that MBC is a mesoporous material with a fluffy structure and a higher specific surface area (23.56 and 32.09 m2·g-1) than PBC600 (13.62 m2·g-1), exhibiting superior and stable adsorption capacities for Sb(III) (50.30 mg·g-1 for 1/30MBC600 and 64·12 mg·g-1 for 1/20MBC600) across a wide pH range (pH 4-8). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy analyses indicated that the main oxides and functional groups involved in the adsorption were manganese oxides and hydroxyl groups. Forty-four per cent of the adsorbed Sb(III) was oxidised to Sb(V) by manganese oxides or hydroxyl groups both on the surface of biochar and in solution. According to adsorption kinetics and isotherms, the adsorption process of Sb(III) is chemisorption, which includes monolayer and multilayer heterogeneous chemisorption processes. To sum up, MBC is an excellent adsorbent for the capture of Sb(III) from contaminated water with strong potential for future application.
Collapse
Affiliation(s)
- Wenjian Mao
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Pan Wu
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, People's Republic of China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, People's Republic of China
| | - Yuqin Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Kaidi Lai
- Guizhou Environment and Engineering Appraisal Center, Guiyang, 550002, People's Republic of China
| | - Lisha Dong
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xufeng Qian
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuntao Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jian Zhu
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, People's Republic of China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
3
|
Berslin D, Reshmi A, Sivaprakash B, Rajamohan N, Kumar PS. Remediation of emerging metal pollutants using environment friendly biochar- Review on applications and mechanism. CHEMOSPHERE 2022; 290:133384. [PMID: 34952021 DOI: 10.1016/j.chemosphere.2021.133384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Bioremediation of heavy metals has become a major environmental concern due to their bio resistant nature and tendency to accumulate. Application of various technologies, involving physical and chemical working principles are applied and passive uptake using sorption involving eco-friendly substrates gained significant attention. Biochar, a cheaper and efficient material, offers good potential due to the greater ease of production, treatment and disposal. This review focuses on the effective application of biochar to treat water contaminated by three specific heavy metals: chromium, lead and arsenic. The on-field applications like soil amendment, industrial wastewater treatment and groundwater treatment using biochar are highlighted. The review article describes the feedstock available for biochar production, various production processes and the importance of optimum conditions like pyrolysis temperature, rate and retention time for various feedstocks reported in literature. The energy requirement of the production process can be supplied by its own energy output. Various modifications that are suitable for the biochar from distinct feedstocks are also discussed. The removal performance of biochar at different working conditions like pH, initial concentration of pollutant and adsorbent dose are consolidated. The highest removal efficiencies reported were by coconut shell biochar (Cr - 99.9%), canola straw biochar (Pb - 100%) and perilla leaf biochar (As - 100%). The adsorption mechanism is explained with reference to kinetics, isotherms, and molecular dynamics. Adsorption mechanism of most of the biochars was found to fit either Freundlich or Langmuir isotherm.
Collapse
Affiliation(s)
- Don Berslin
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Angelin Reshmi
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - P Senthil Kumar
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| |
Collapse
|
4
|
Amaku JF, Ogundare SA, Akpomie KG, Conradie J. Pentaclethra macrophylla stem bark extract anchored on functionalized MWCNT-spent molecular sieve nanocomposite for the biosorption of hexavalent chromium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:301-310. [PMID: 34154475 DOI: 10.1080/15226514.2021.1937930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
nsufficient innovative research on the sequestration of Cr(VI) from the aquatic ecosystem has made Cr(VI) a recalcitrant water contaminant that often affects water sources. In this work, a novel plant anchor-nanocomposite was fabricated from the spent molecular sieve, multi-walled carbon nanotubes, and the extract from the stem bark of Pentaclethra macrophylla. It was envisaged that due to the phytochemical constituent of the modifier, this nanocomposite could also act as potent adsorbents for the treatment of Cr(VI) polluted water. To the best of our knowledge, the application of Pentaclethra macrophylla stem bark extract as a modifier for the green fabrication of nanocomposite has not been reported. The resulting composites showed good uptake capacity for Cr(VI) as well as efficient reusability.
Collapse
Affiliation(s)
- James Friday Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Segun A Ogundare
- Chemical Sciences Department, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
5
|
Tian B, Hua S, Tian Y, Liu J. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1317-1340. [PMID: 33079345 DOI: 10.1007/s11356-020-11168-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Water is a vital substance that constitutes biological structures and sustains life. However, water pollution is currently among the major environmental challenges and has attracted increasing study attention. How to handle contaminated water now mainly focuses on removing or reducing the pollutants from the wastewater. Cyclodextrin derivatives, possessing external hydrophilic and internal hydrophobic properties, have been recognized as new-generation adsorbents to exert positive effects on water pollution treatment. This article outlines recent contributions of cyclodextrin-based adsorbents on wastewater treatment, highlighting different adsorption mechanisms of cyclodextrin-based adsorbents under different influencing factors. The crosslinked and immobilized cyclodextrin-based adsorbents all displayed outstanding adsorption capacities. Particularly, according to specific pollutants including metal ions, organic chemicals, pesticides, and drugs in wastewater, this article has classified and organized various cyclodextrin-based adsorbents into tables, which could pave an intuitive shortcut for designing and developing efficient cyclodextrin-based adsorbents for targeted wastewater pollutants. Besides, this article specially discusses cost-effectiveness and regeneration performance of current cyclodextrin-based adsorbents. Finally, the challenges and future directions of cyclodextrin-based adsorbents are prospected in this article, which may shed substantial light on practical industrial applications of cyclodextrin-based adsorbents.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi, 830046, China.
| | - Shiyao Hua
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu Tian
- School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Jiayue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Xia S, Song Z, Jeyakumar P, Bolan N, Wang H. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1543-1567. [PMID: 31673917 DOI: 10.1007/s10653-019-00445-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr) is a common environmental contaminant due to industrial processes and anthropogenic activities such as mining of chrome ore, electroplating, timber treatment, leather tanning, fertilizer and pesticide, etc. Cr exists mainly in both hexavalent [Cr(VI)] and trivalent [Cr(III)] form, being Cr(VI) with non-degradability and potential to be hidden, thereby affecting surrounding environment and being toxic to human health. Therefore, researches on remediation of Cr pollution in the environment have received much attention. Biochar is a low-cost adsorbent, which has been identified as a suitable material for Cr(VI) immobilization and removal from soil and wastewater. This review incorporates existing literature to provide a detailed examination into the (1) Cr chemistry, the source and current status of Cr pollution, and Cr toxicity and health; (2) feedstock and characterization of biochar; (3) processes and mechanisms of immobilization and removal of Cr by biochar, including oxidation-reduction, electrostatic interactions, complexation, ion exchange, and precipitation; (4) applications of biochar for Cr(VI) remediation and the modification of biochar to improve its performance; (5) factors affecting removal efficiency of Cr(VI) with respect to its physico-chemical conditions, including pH, temperature, initial concentration, reaction time, biochar characteristics, and coexisting contaminants. Finally, we identify current issues, challenges, and put forward recommendations as well as proposed directions for future research. This review provides a thorough understanding of using biochar as an emerging biomaterial adsorbent in Cr(VI)-contaminated soils and wastewater.
Collapse
Affiliation(s)
- Shaopan Xia
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Lian G, Wang B, Lee X, Li L, Liu T, Lyu W. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134119. [PMID: 32380611 DOI: 10.1016/j.scitotenv.2019.134119] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 06/11/2023]
Abstract
Two kinds of industrial wastes (distillers grains and phosphogypsum) were used as raw materials to produce a new biochar composite for Cr(VI) removal in water. The influencing factors including pyrolysis temperature, dosage, initial solution pH as well as contacting time were explored. The adsorption kinetics, isotherms, and thermodynamics of two biochars were conducted. The results show that the adsorption of Cr(VI) by biochar is related to pH. The ideal pH was 3.0 and the adsorbed Cr(VI) decreases as the pH increases. The Cr(VI) adsorption process conformed to the pseudo-second-order equation. Phosphogypsum modified (PM)-biochar is well described by the Freundlich model. The maximum adsorption capacities of distillers grains (DG)-biochar and PM-biochar on Cr(VI) were 63.1 and 157.9 mg g-1, respectively. The thermodynamic analysis indicates that the Cr(VI) adsorption occurs spontaneously which is an endothermic process. This study provided an alternative way for Cr(VI) removal from water.
Collapse
Affiliation(s)
- Guoqi Lian
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang 550025, Guizhou, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ling Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Taoze Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wenqiang Lyu
- Institute of Guizhou Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China
| |
Collapse
|
8
|
Kim HB, Kim JG, Kim SH, Kwon EE, Baek K. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:231-238. [PMID: 31310873 DOI: 10.1016/j.envpol.2019.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Employing biochar for environmental remediation has been widely practiced. Nonetheless, the reduction mechanisms of hexavalent chromium (Cr(VI)) in the presence of biochar have not been fully elucidated (i.e., direct or indirect reduction of Cr(VI) by biochar). In particular, the effect of light on Cr(VI) reduction by biochar was rarely reported. Thus, to clarify the reduction mechanisms of Cr(VI) by biochar at the fundamental level, this study laid great emphasis on the photo-induced reduction of Cr(VI) in the application of biochar. Biochar releases dissolved organic matter (DOM), the DOM can extract Fe(III) from soil by complexation, and the complexes can be photo-reacted under the light. In these respects, Fe(II) formed by the photo-induced reaction of DOM-Fe(III) was particularly evaluated in this study. To evaluate that, three biomass samples (rice straw, granular sludge from an up-flow anaerobic sludge blanket, and spent coffee ground) were torrefied to biochar. To circumvent the adsorption of Cr(VI) onto biochar, biochar extractives (served as a source for DOM) and Fe(III) solution were tested with/without UV light to prove Fe(II) formation. This study experimentally proved that the more Fe(II) under the UV radiation was formed in the co-existence with biochar extractives and Fe(III). All experimental data from three biochar samples were indeed very similar. Cr(VI) reduction by Fe(II) from GB, RB, and CB reached up to 96, 79, and 100%, respectively. The different reduction efficiency signified that the low molecular weight of organic acids, such as oxalate, were more sensitive to the UV light, thereby resulting in the enhanced Fe(II) formation. Such Fe(II) formation subsequently led to the high reduction efficiency of Cr(VI).
Collapse
Affiliation(s)
- Hye-Bin Kim
- Department of Environmental Engineering and Soil Environment Research Center, Chonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environmental Engineering and Soil Environment Research Center, Chonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea
| | - Seon-Hee Kim
- K-WATER, Water Quality Center, Daejeon 34350, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Kitae Baek
- Department of Environmental Engineering and Soil Environment Research Center, Chonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea.
| |
Collapse
|
9
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
10
|
Cai W, Wei J, Li Z, Liu Y, Zhou J, Han B. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.062] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zhao HT, Ma S, Zheng SY, Han SW, Yao FX, Wang XZ, Wang SS, Feng K. β-cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb 2+ removal. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:206-213. [PMID: 30240994 DOI: 10.1016/j.jhazmat.2018.09.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/26/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to synthesize the functionalized biochars with β-cyclodextrin (β-CD), compare the two kinds of adsorption capability, and try to explore the possible mechanism for the adsorption Pb2+ by β-CD functionalized rice straw and palm biochars in the aquatic environment. The performance of the functionalized biochars was matched against the activated and raw biochars. Rice straw biochar loaded with β-CD performed better than functionalized palm biochar with the adsorption capabilities of 130.60 mg/g and 90.30 mg/g at Pb2+ concentration of 3000 mg/L and 2000 mg/L, respectively. Maximum adsorption capability of functionalized rice straw and palm biochars from the Langmuir isotherms were all fitted out to be 131.24 mg/g and 118.08 mg/g for Pb2+. Kinetics and thermodynamics are combined to investigate the Pb2+ removal by the two functionalized biochars, e.g, Pb2+ is mainly removed by chemical process for functionalized palm biochar, whereas by both physical and chemical factors for functionalized rice straw biochar.
Collapse
Affiliation(s)
- Hai-Tao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Shuai Ma
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Sheng-Yang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Shu-Wen Han
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Fen-Xia Yao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Xiao-Zhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Sheng-Sen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Ke Feng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
12
|
H3PO4-Activated Cattail Carbon Production and Application in Chromium Removal from Aqueous Solution: Process Optimization and Removal Mechanism. WATER 2018. [DOI: 10.3390/w10060754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|