1
|
Gałczyńska K, Węgierek-Ciuk A, Durlik-Popińska K, Żarnowiec P, Kurdziel K, Arabski M. Copper(II) complex with 1-allylimidazole induces G2/M cell cycle arrest and suppresses A549 cancer cell growth by attenuating Wnt, JAK-STAT, and TGF-β signaling pathways. J Inorg Biochem 2025; 264:112791. [PMID: 39616876 DOI: 10.1016/j.jinorgbio.2024.112791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/12/2025]
Abstract
The main aim of the study was to investigate the molecular mechanism of action of the potentially anti-cancer agent copper(II) complex with 1-allylimidazole [Cu(1-allim)4(NO3)2] using the A549 lung cancer line, toward which it is selectively cytotoxic. Gene expression analysis showed that the complex caused apoptosis through WNT, JAK-STAT, and TGF-β pathways. The complex induced DNA damage, ROS production, and depolarization of the mitochondrial membrane, suggesting that its toxicity is likely due to induction of the intrinsic apoptosis pathway. It also arrested the cell cycle at G2/M phase. Particularly noteworthy is that it inhibited the WNT pathway, a target for lung cancer therapies. Its complex mechanism of action may hinder the acquisition of immunity by cancer cells.
Collapse
Affiliation(s)
- Katarzyna Gałczyńska
- Jan Kochanowski University, Institute of Biology, Uniwersytecka 7, 25-406 Kielce, Poland.
| | - Aneta Węgierek-Ciuk
- Jan Kochanowski University, Institute of Biology, Uniwersytecka 7, 25-406 Kielce, Poland
| | | | - Paulina Żarnowiec
- Jan Kochanowski University, Institute of Biology, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Krystyna Kurdziel
- Jan Kochanowski University, Institute of Chemistry, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Michał Arabski
- Jan Kochanowski University, Institute of Biology, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
2
|
Uski OJ, Rankin G, Wingfors H, Magnusson R, Boman C, Lindgren R, Muala A, Blomberg A, Bosson JA, Sandström T. The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells. J Xenobiot 2024; 14:1432-1449. [PMID: 39449421 PMCID: PMC11503417 DOI: 10.3390/jox14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity.
Collapse
Affiliation(s)
- Oskari J. Uski
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Roger Magnusson
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Robert Lindgren
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Jenny A. Bosson
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| |
Collapse
|
3
|
Rahmani S, Goli A, Zackery A. Biodiesel supply chain network design: a comprehensive review with qualitative and quantitative insights. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34787-34816. [PMID: 38733441 DOI: 10.1007/s11356-024-33392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
The global community is actively pursuing alternative energy sources to mitigate environmental concerns and decrease dependence on fossil fuels. Biodiesel, recognized as a clean and eco-friendly fuel with advantages over petroleum-based alternatives, has been identified as a viable substitute. However, its commercialization encounters challenges due to costly production processes. Establishing a more efficient supply chain for mass production and distribution could surmount these obstacles, rendering biodiesel a cost-effective solution. Despite numerous review articles across various renewable energy supply chain domains, there remains a gap in the literature specifically addressing the biodiesel supply chain network design. This research entails a comprehensive systematic literature review (SLR) focusing on the design of biodiesel supply chain networks. The primary objective is to formulate an economically, environmentally, and socially optimized supply chain framework. The review also seeks to offer a holistic overview of pertinent technical terms and key activities involved in these supply chains. Through this SLR, a thorough examination and synthesis of existing literature will yield valuable insights into the design and optimization of biodiesel supply chains. Additionally, it will identify critical research gaps in the field, proposing the exploration of fourth-generation feedstocks, integration of multi-channel chains, and the incorporation of sustainability and resilience aspects into the supply chain network design. These proposed areas aim to address existing knowledge gaps and enhance the overall effectiveness of biodiesel supply chain networks.
Collapse
Affiliation(s)
- Sourena Rahmani
- Department of Industrial Engineering and Futures Studies, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Alireza Goli
- Department of Industrial Engineering and Futures Studies, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Ali Zackery
- Department of Industrial Engineering and Futures Studies, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Rothmann MH, Møller P, Essig YJ, Gren L, Malmborg VB, Tunér M, Pagels J, Krais AM, Roursgaard M. Genotoxicity by rapeseed methyl ester and hydrogenated vegetable oil combustion exhaust products in lung epithelial (A549) cells. Mutagenesis 2023; 38:238-249. [PMID: 37232551 DOI: 10.1093/mutage/gead016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/25/2023] [Indexed: 05/27/2023] Open
Abstract
Biofuel is an attractive substitute for petrodiesel because of its lower environmental footprint. For instance, the polycyclic aromatic hydrocarbons (PAH) emission per fuel energy content is lower for rapeseed methyl ester (RME) than for petrodiesel. This study assesses genotoxicity by extractable organic matter (EOM) of exhaust particles from the combustion of petrodiesel, RME, and hydrogenated vegetable oil (HVO) in lung epithelial (A549) cells. Genotoxicity was assessed as DNA strand breaks by the alkaline comet assay. EOM from the combustion of petrodiesel and RME generated the same level of DNA strand breaks based on the equal concentration of total PAH (i.e. net increases of 0.13 [95% confidence interval (CI): 0.002, 0.25, and 0.12 [95% CI: 0.01, 0.24] lesions per million base pairs, respectively). In comparison, the positive control (etoposide) generated a much higher level of DNA strand breaks (i.e. 0.84, 95% CI: 0.72, 0.97) lesions per million base pairs. Relatively low concentrations of EOM from RME and HVO combustion particles (<116 ng/ml total PAH) did not cause DNA strand breaks in A549 cells, whereas benzo[a]pyrene and PAH-rich EOM from petrodiesel combusted using low oxygen inlet concentration were genotoxic. The genotoxicity was attributed to high molecular weight PAH isomers with 5-6 rings. In summary, the results show that EOM from the combustion of petrodiesel and RME generate the same level of DNA strand breaks on an equal total PAH basis. However, the genotoxic hazard of engine exhaust from on-road vehicles is lower for RME than petrodiesel because of lower PAH emission per fuel energy content.
Collapse
Affiliation(s)
- Monika Hezareh Rothmann
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Louise Gren
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Vilhelm B Malmborg
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Martin Tunér
- Division of Combustion Engines, Lund University, SE-221 00 Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
5
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol 2022; 19:67. [PMID: 36447278 PMCID: PMC9707232 DOI: 10.1186/s12989-022-00507-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The impacts of air pollution on public health have become a great concern worldwide. Ambient particulate matter (PM) is a major air pollution that comprises a heterogeneous mixture of different particle sizes and chemical components. The chemical composition and physicochemical properties of PM change with space and time, which may cause different impairments. However, the mechanisms of the adverse effects of PM on various systems have not been fully elucidated and systematically integrated. The Adverse Outcome Pathway (AOP) framework was used to comprehensively illustrate the molecular mechanism of adverse effects of PM and its components, so as to clarify the causal mechanistic relationships of PM-triggered toxicity on various systems. The main conclusions and new insights of the correlation between public health and PM were discussed, especially at low concentrations, which points out the direction for further research in the future. With the deepening of the study on its toxicity mechanism, it was found that PM can still induce adverse health effects with low-dose exposure. And the recommended Air Quality Guideline level of PM2.5 was adjusted to 5 μg/m3 by World Health Organization, which meant that deeper and more complex mechanisms needed to be explored. Traditionally, oxidative stress, inflammation, autophagy and apoptosis were considered the main mechanisms of harmful effects of PM. However, recent studies have identified several emerging mechanisms involved in the toxicity of PM, including pyroptosis, ferroptosis and epigenetic modifications. This review summarized the comprehensive evidence on the health effects of PM and the chemical components of it, as well as the combined toxicity of PM with other air pollutants. Based on the AOP Wiki and the mechanisms of PM-induced toxicity at different levels, we first constructed the PM-related AOP frameworks on various systems.
Collapse
Affiliation(s)
- Tianyu Li
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Yang Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
7
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Arias S, Estrada V, Ortiz IC, Molina FJ, Agudelo JR. Biological toxicity risk assessment of two potential neutral carbon diesel fuel substitutes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119677. [PMID: 35753542 DOI: 10.1016/j.envpol.2022.119677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
We investigated the biological response of soluble organic fraction (SOF) and water-soluble fraction (WSF) extracted from particulate matter (PM) emitted by an automotive diesel engine operating in a representative urban driving condition. The engine was fueled with ultra-low sulfur diesel (ULSD), and its binary blends by volume with 13% of butanol (Bu13), and with hydrotreated vegetable oil (HVO) at 13% (HVO13) and 20% (HVO20). Cytotoxicity, genotoxicity, oxidative DNA damage and ecotoxicity tests were carried out, and 16 polycyclic aromatic hydrocarbons (PAH) expressed as tbenzo(a)pyrene total toxicity equivalent (BaP-TEQ) were also analyzed. The Hepatocarcinoma epithelial cell line (HepG2) was exposed to SOF for 24 h and analyzed using comet assay, with the inclusion of formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (Endo III) to recognize oxidized DNA bases. The WSF was evaluated through acute ecotoxicity tests with the aquatic microcrustacean Daphnia pulex (D. Pulex). Results showed that there was no cytotoxic activity for all tested SOF concentrations. Genotoxic responses by all the SOF samples were at same level, except for the HVO13 which was weaker in the absence of the enzymes. The addition of the FPG and Endo III enzymes resulted in a significant increase in the comet tail, indicating that the DNA damage from SOF for all tested fuel blends involves oxidative damage including a higher level of oxidized purines for ULSD and Bu13 in comparison with HVO blends, but the oxidized pyrimidines for HVO blends were slightly higher compared to Bu13. The WSF did not show acute ecotoxicity for any of the fuels. Unlike other samples, Bu13-derived particles significantly increase the BaP-TEQ. The contribution to the genotoxic activity and oxidative DNA from SOF was not correlated to BaP-TEQ, which means that the biological activity of PM might be affected also by other toxic compounds present in particulate phase.
Collapse
Affiliation(s)
- Silvana Arias
- Grupo de Investigación en Gestión y Modelación Ambiental-GAIA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Manejo Eficiente de la Energía -GIMEL, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Verónica Estrada
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, UPB, Calle 78B 72A - 109, Medellín, Colombia
| | - Isabel C Ortiz
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, UPB, Calle 78B 72A - 109, Medellín, Colombia
| | - Francisco J Molina
- Grupo de Investigación en Gestión y Modelación Ambiental-GAIA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - John R Agudelo
- Grupo de Manejo Eficiente de la Energía -GIMEL, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
9
|
Landwehr KR, Hillas J, Mead-Hunter R, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Toxicity of different biodiesel exhausts in primary human airway epithelial cells grown at air-liquid interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155016. [PMID: 35381248 DOI: 10.1016/j.scitotenv.2022.155016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Biodiesel is created through the transesterification of fats/oils and its usage is increasing worldwide as global warming concerns increase. Biodiesel fuel properties change depending on the feedstock used to create it. The aim of this study was to assess the different toxicological properties of biodiesel exhausts created from different feedstocks using a complex 3D air-liquid interface (ALI) model that mimics the human airway. Primary human airway epithelial cells were grown at ALI until full differentiation was achieved. Cells were then exposed to 1/20 diluted exhaust from an engine running on Diesel (ULSD), pure or 20% blended Canola biodiesel and pure or 20% blended Tallow biodiesel, or Air for control. Exhaust was analysed for various physio-chemical properties and 24-h after exposure, ALI cultures were assessed for permeability, protein release and mediator response. All measured exhaust components were within industry safety standards. ULSD contained the highest concentrations of various combustion gases. We found no differences in terms of particle characteristics for any of the tested exhausts, likely due to the high dilution used. Exposure to Tallow B100 and B20 induced increased permeability in the ALI culture and the greatest increase in mediator response in both the apical and basal compartments. In contrast, Canola B100 and B20 did not impact permeability and induced the smallest mediator response. All exhausts but Canola B20 induced increased protein release, indicating epithelial damage. Despite the concentrations of all exhausts used in this study meeting industry safety regulations, we found significant toxic effects. Tallow biodiesel was found to be the most toxic of the tested fuels and Canola the least, both for blended and pure biodiesel fuels. This suggests that the feedstock biodiesel is made from is crucial for the resulting health effects of exhaust exposure, even when not comprising the majority of fuel composition.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth 6151, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| |
Collapse
|
10
|
Bai X, Chen H, Oliver BG. The health effects of traffic-related air pollution: A review focused the health effects of going green. CHEMOSPHERE 2022; 289:133082. [PMID: 34843836 DOI: 10.1016/j.chemosphere.2021.133082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Traffic-related air pollution (TRAP) is global concern due to both the ecological damage of TRAP and the adverse health effects in Humans. Several strategies to reduce TRAP have been implemented, including the use of sustainable fuels, after-treatment technologies, and new energy vehicles. Such approaches can reduce the exhaust of particulate matter, adsorbed chemicals and a range of gases, but from a health perspective these approaches are not always successful. This review aims to discuss the approaches taken, and to then describe the likely health effects of these changes.
Collapse
Affiliation(s)
- Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
| |
Collapse
|
11
|
Scholten RH, Essig YJ, Roursgaard M, Jensen A, Krais AM, Gren L, Dierschke K, Gudmundsson A, Wierzbicka A, Møller P. Inhalation of hydrogenated vegetable oil combustion exhaust and genotoxicity responses in humans. Arch Toxicol 2021; 95:3407-3416. [PMID: 34468814 DOI: 10.1007/s00204-021-03143-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Biofuels from vegetable oils or animal fats are considered to be more sustainable than petroleum-derived diesel fuel. In this study, we have assessed the effect of hydrogenated vegetable oil (HVO) exhaust on levels of DNA damage in peripheral blood mononuclear cells (PBMCs) as primary outcome, and oxidative stress and inflammation as mediators of genotoxicity. In a randomized cross-over study, healthy humans were exposed to filtered air, inorganic salt particles, exhausts from combustion of HVO in engines with aftertreatment [i.e. emission with nitrogen oxides and low amounts of particulate matter less than 2.5 µm (approximately 1 µg/m3)], or without aftertreatment (i.e. emission with nitrogen oxides and 93 ± 13 µg/m3 of PM2.5). The subjects were exposed for 3 h and blood samples were collected before, within 1 h after the exposure and 24 h after. None of the exposures caused generation of DNA strand breaks and oxidatively damaged DNA, or affected gene expression of factors related to DNA repair (Ogg1), antioxidant defense (Hmox1) or pro-inflammatory cytokines (Ccl2, Il8 and Tnfa) in PBMCs. The results from this study indicate that short-term HVO exhaust exposure is not associated with genotoxic hazard in humans.
Collapse
Affiliation(s)
- Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Louise Gren
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
12
|
Nieto Marín V, Echavarría Mazo LV, Londoño Berrio M, Orozco Jiménez LY, Estrada Vélez V, Isaza JP, Ortiz-Trujillo IC. Genotoxicity of organic material extracted from particulate matter of alternative fuels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17844-17852. [PMID: 33400118 DOI: 10.1007/s11356-020-10894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Global demand for energy is rapidly increasing, and resources for the production of petroleum-based fuels are running out. For this, renewable fuels like biodiesel and hydrotreated vegetable oil biofuel are considered important alternatives to replace such fuels. In this study, we evaluated the in vitro genotoxicity effect on HepG2 cells of organic material extracted from particulate matter emissions of an engine fueled with conventional diesel or mixtures of diesel with 10% of biomass. The emissions were collected in two operational modes, 2410 rpm (slope simulation) and 1890 rpm (plane). Genotoxicity was evaluated through two methods, chromosomal aberration test and the alkaline comet assay. The former did not show any genotoxic effect, but the latter exhibited a statistically significant effect despite the operational mode of the engine and the concentration organic material extracted. In conclusion, regardless of the concentration of organic material extracted from particulate matter, the operational mode of the engine, or the fuel used, a significant damage of the DNA was found. In general, at the physicochemical level, a decrease in the amount of emissions of the used fuels is not directly related to a decrease in the genotoxicity potential.
Collapse
Affiliation(s)
- Valentina Nieto Marín
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Leidy Vanessa Echavarría Mazo
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Maritza Londoño Berrio
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Luz Yaneth Orozco Jiménez
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Verónica Estrada Vélez
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Juan Pablo Isaza
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Isabel Cristina Ortiz-Trujillo
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia.
| |
Collapse
|
13
|
Snyder RJ, Kleeberger SR. Role of Mitochondrial DNA in Inflammatory Airway Diseases. Compr Physiol 2021; 11:1485-1499. [PMID: 33577124 DOI: 10.1002/cphy.c200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mitochondrial genome is a small, circular, and highly conserved piece of DNA which encodes only 13 protein subunits yet is vital for electron transport in the mitochondrion and, therefore, vital for the existence of multicellular life on Earth. Despite this importance, mitochondrial DNA (mtDNA) is located in one of the least-protected areas of the cell, exposing it to high concentrations of intracellular reactive oxygen species (ROS) and threat from exogenous substances and pathogens. Until recently, the quality control mechanisms which ensured the stability of the nuclear genome were thought to be minimal or nonexistent in the mitochondria, and the thousands of redundant copies of mtDNA in each cell were believed to be the primary mechanism of protecting these genes. However, a vast network of mechanisms has been discovered that repair mtDNA lesions, replace and recycle mitochondrial chromosomes, and conduct alternate RNA processing for previously undescribed mitochondrial proteins. New mtDNA/RNA-dependent signaling pathways reveal a mostly undiscovered biochemical landscape in which the mitochondria interface with their host cells/organisms. As the myriad ways in which the function of the mitochondrial genome can affect human health have become increasingly apparent, the use of mitogenomic biomarkers (such as copy number and heteroplasmy) as toxicological endpoints has become more widely accepted. In this article, we examine several pathologies of human airway epithelium, including particle exposures, inflammatory diseases, and hyperoxia, and discuss the role of mitochondrial genotoxicity in the pathogenesis and/or exacerbation of these conditions. © 2021 American Physiological Society. Compr Physiol 11:1485-1499, 2021.
Collapse
Affiliation(s)
- Ryan J Snyder
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| | - Steven R Kleeberger
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| |
Collapse
|
14
|
Møller P, Scholten RH, Roursgaard M, Krais AM. Inflammation, oxidative stress and genotoxicity responses to biodiesel emissions in cultured mammalian cells and animals. Crit Rev Toxicol 2020; 50:383-401. [PMID: 32543270 DOI: 10.1080/10408444.2020.1762541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biodiesel fuels are alternatives to petrodiesel, especially in the transport sector where they have lower carbon footprint. Notwithstanding the environmental benefit, biodiesel fuels may have other toxicological properties than petrodiesel. Particulate matter (PM) from petrodiesel causes cancer in the lung as a consequence of delivery of genotoxic polycyclic aromatic hydrocarbons, oxidative stress and inflammation. We have reviewed articles from 2002 to 2019 (50% of the articles since 2015) that have described toxicological effects in terms of genotoxicity, oxidative stress and inflammation of biodiesel exhaust exposure in humans, animals and cell cultures. The studies have assessed first generation biodiesel from different feedstock (e.g. rapeseed and soy), certain second generation fuels (e.g. waste oil), and hydrogenated vegetable oil. It is not possible to rank the potency of toxicological effects of specific biodiesel fuels. However, exposure to biodiesel exhaust causes oxidative stress, inflammation and genotoxicity in cell cultures. Three studies in animals have not indicated genotoxicity in lung tissue. The database on oxidative stress and inflammation in animal studies is larger (13 studies); ten studies have reported increased levels of oxidative stress biomarkers or inflammation, although the effects have been modest in most studies. The cell culture and animal studies have not consistently shown a different potency in effect between biodiesel and petrodiesel exhausts. Both increased and decreased potency have been reported, which might be due to differences in feedstock or combustion conditions. In conclusion, combustion products from biodiesel and petrodiesel fuel may evoke similar toxicological effects on genotoxicity, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
15
|
León-Mejía G, Quintana-Sosa M, de Moya Hernandez Y, Rodríguez IL, Trindade C, Romero MA, Luna-Carrascal J, Ortíz LO, Acosta-Hoyos A, Ruiz-Benitez M, Valencia KF, Rohr P, da Silva J, Henriques JAP. DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20516-20526. [PMID: 32246425 DOI: 10.1007/s11356-020-08533-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many of the compounds in this mixture can cause oxidative damage to DNA and are considered carcinogenic for humans. Further, chronic DEE exposure increases risks of cardiovascular and pulmonary diseases. Despite these pervasive health risks, there is limited and inconsistent information regarding genetic factors conferring susceptibility or resistance to DEE genotoxicity. The present study evaluated the effects of polymorphisms in two base excision repair (BER) genes (OGG1 Ser326Cys and XRCC1 Arg280His), one homologous recombination (HRR) gene (XRCC3 Thr241Met) and two xenobiotic metabolism genes (GSTM1 and GSTT1) on the genotoxicity profiles among 123 mechanics exposed to workplace DEE. Polymorphisms were determined by PCR-RFLP. In comet assay, individuals with the GSTT1 null genotype demonstrated significantly greater % tail DNA in lymphocytes than those with non-null genotype. In contrast, these null individuals exhibited significantly lower frequencies of binucleated (BN) cells and nuclear buds (NBUDs) in buccal cells than non-null individuals. Heterozygous hOGG1 326 individuals (hOGG1 326 Ser/Cys) exhibited higher buccal cell NBUD frequency than hOGG1 326 Ser/Ser individuals. Individuals carrying the XRCC3 241 Met/Met polymorphism also showed significantly higher buccal cell NBUD frequencies than those carrying the XRCC3 241 Thr/Thr polymorphism. We found a high flow of particulate matter with a diameter of < 2.5 μm (PM2.5) in the workplace. The most abundant metals in DEPs were iron, copper, silicon and manganese as detected by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX). Scanning electron microscopy (SEM-EDS) revealed particles with diameters smaller than PM2.5, including nanoparticles forming aggregates and agglomerates. Our results demonstrate the genotoxic effects of DEE and the critical influence of genetic susceptibility conferred by DNA repair and metabolic gene polymorphisms that shed light into the understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| | - Milton Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | | | - Ibeth Luna Rodríguez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Marco Anaya Romero
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Jaime Luna-Carrascal
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Ludis Oliveros Ortíz
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Paula Rohr
- Laboratório de Genética, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Campus Carreiros, Av. Itália km 8, Rio Grande, RS, 96201-900, Brazil
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med 2020; 151:56-68. [PMID: 32007522 DOI: 10.1016/j.freeradbiomed.2020.01.179] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
A well-functioning immune system is vital for a healthy body. Inadequate and excessive immune responses underlie diverse pathologies such as serious infections, metastatic malignancies and auto-immune conditions. Therefore, understanding the effects of ambient pollutants on the immune system is vital to understanding how pollution causes disease, and how that pathology could be abrogated. The immune system itself consists of multiple types of immune cell that act together to generate (or fail to generate) immune responses and in this article we review evidence of how air pollutants can affect different immune cell types such as particle-clearing macrophages, inflammatory neutrophils, dendritic cells that orchestrate adaptive immune responses and lymphocytes that enact those responses. Common themes that emerge are of the capacity of air pollutants to stimulate pro-inflammatory immune responses across multiple classes of immune cell. Air pollution can enhance T helper lymphocyte type 2 (Th2) and T helper lymphocyte type 17 (Th17) adaptive immune responses, as seen in allergy and asthma, and dysregulate anti-viral immune responses. The clinical effects of air pollution, in particular the known association between elevated ambient pollution and exacerbations of asthma and chronic obstructive pulmonary disease (COPD), are consistent with these identified immunological mechanisms. Further to this, as inhaled air pollution deposits primarily on the respiratory mucosa this review focuses on mechanisms of respiratory disease. However, as discussed in the article, air pollution also affects the wider immune system for example in the neonate and gastrointestinal tract. Whilst the many identified actions of air pollution on the immune system are notably diverse, immunological research does suggest potential strategies to ameliorate such effects, for example with vitamin D supplementation. An in-depth understanding of the immunological effects of ambient pollutants should hopefully yield new ideas on how to reduce the adverse health effects of air pollution.
Collapse
Affiliation(s)
- Drew A Glencross
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Tzer-Ren Ho
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Nuria Camiña
- MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Catherine M Hawrylowicz
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Paul E Pfeffer
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
17
|
Drizik E, Corbett S, Zheng Y, Vermeulen R, Dai Y, Hu W, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Zhang X, Yang J, Bassig B, Liu H, Ye M, Liu G, Jia X, Meng T, Bin P, Zhang J, Silverman D, Spira A, Rothman N, Lenburg ME, Lan Q. Transcriptomic changes in the nasal epithelium associated with diesel engine exhaust exposure. ENVIRONMENT INTERNATIONAL 2020; 137:105506. [PMID: 32044442 PMCID: PMC8725607 DOI: 10.1016/j.envint.2020.105506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Diesel engine exhaust (DEE) exposure causes lung cancer, but the molecular mechanisms by which this occurs are not well understood. OBJECTIVES To assess transcriptomic alterations in nasal epithelium of DEE-exposed factory workers to better understand the cellular and molecular effects of DEE. METHODS Nasal epithelial brushings were obtained from 41 diesel engine factory workers exposed to relatively high levels of DEE (17.2-105.4 μg/m3), and 38 unexposed workers from factories without DEE exposure. mRNA was profiled for gene expression using Affymetrix microarrays. Linear modeling was used to identify differentially expressed genes associated with DEE exposure and interaction effects with current smoking status. Pathway enrichment among differentially expressed genes was assessed using EnrichR. Gene Set Enrichment Analysis (GSEA) was used to compare gene expression patterns between datasets. RESULTS 225 genes had expression associated with DEE exposure after adjusting for smoking status (FDR q < 0.25) and were enriched for genes in pathways related to oxidative stress response, cell cycle pathways such as MAPK/ERK, protein modification, and transmembrane transport. Genes up-regulated in DEE-exposed individuals were enriched among the genes most up-regulated by cigarette smoking in a previously reported bronchial airway smoking dataset. We also found that the DEE signature was enriched among the genes most altered in two previous studies of the effects of acute DEE on PBMC gene expression. An exposure-response relationship was demonstrated between air levels of elemental carbon and the first principal component of the DEE signature. CONCLUSIONS A gene expression signature was identified for workers occupationally exposed to DEE that was altered in an exposure-dependent manner and had some overlap with the effects of smoking and the effects of acute DEE exposure. This is the first study of gene expression in nasal epithelial cells of workers heavily exposed to DEE and provides new insights into the molecular alterations that occur with DEE exposure.
Collapse
Affiliation(s)
- E Drizik
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - S Corbett
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Y Zheng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - R Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Y Dai
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - D Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - H Duan
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Y Niu
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - J Xu
- Hong Kong University, Hong Kong, China
| | - W Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - K Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - B Zhou
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Zhang
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - J Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - M Ye
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - X Jia
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - T Meng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - P Bin
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - J Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, USA; Global Health Research Center, Duke Kunshan University, Kunshan City, Jiangsu Province, China
| | - D Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - A Spira
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA; The Lung Cancer Initiative at Johnson & Johnson, Cambridge, MA, USA
| | - N Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - M E Lenburg
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA.
| | - Q Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
18
|
Rossner P, Cervena T, Vojtisek-Lom M, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Margaryan H, Beranek V, Pechout M, Macoun D, Klema J, Rossnerova A, Ciganek M, Topinka J. The Biological Effects of Complete Gasoline Engine Emissions Exposure in a 3D Human Airway Model (MucilAir TM) and in Human Bronchial Epithelial Cells (BEAS-2B). Int J Mol Sci 2019; 20:E5710. [PMID: 31739528 PMCID: PMC6888625 DOI: 10.3390/ijms20225710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 01/31/2023] Open
Abstract
The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Tereza Cervena
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| | - Michal Vojtisek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Antonin Ambroz
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Zuzana Novakova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Fatima Elzeinova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Hasmik Margaryan
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Vit Beranek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - David Macoun
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, 12135 Prague, Czech Republic;
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| |
Collapse
|
19
|
Godri Pollitt KJ, Chhan D, Rais K, Pan K, Wallace JS. Biodiesel fuels: A greener diesel? A review from a health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1036-1055. [PMID: 31726536 DOI: 10.1016/j.scitotenv.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 06/10/2023]
Abstract
Biodiesels have been promoted as a greener alternative to diesel with decreased emissions and health effects. To investigate the scientific basis of the suggested environmental and health benefits offered by biodiesel, this review examines the current state of knowledge and key uncertainties of pollutant profiles of biodiesel engine exhaust and the associated the respiratory and cardiovascular outcomes. The ease and low cost of biodiesel production has facilitated greater distribution and commercial use. The pollutant profile of biodiesel engine exhaust is distinct from diesel, characterised by increased NOx and aldehyde emissions but decreased CO and CO2. Lower engine-out particulate matter mass concentrations have also been observed over a range of feedstocks. However, these reduced emissions have been attributable to a shift towards smaller sized particulate emissions. The toxicity of biodiesel engine exhaust has been investigated in vitro using various lung cell, in vivo evaluating responses induced in animals and through several human exposure studies. Discrepancies exist across results reported by in vitro and in vivo studies, which may be attributable to differences in biodiesel feedstocks, engine characteristics, operating conditions or use of aftertreatment systems across test scenarios. The limited human testing further suggests short-term exposure to biodiesel engine exhaust is associated with cardiopulmonary outcomes that are comparable to diesel. Additional information about the health effects of biodiesel engine exhaust exposure is required for effective public health policy.
Collapse
Affiliation(s)
- Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, Laboratory of Epidemiology and Public Health, 60 College Street, Room 444, New Haven, CT 06520, USA.
| | - Dany Chhan
- Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Khaled Rais
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kang Pan
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - James S Wallace
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
DeMarini DM, Mutlu E, Warren SH, King C, Gilmour MI, Linak WP. Mutagenicity emission factors of canola oil and waste vegetable oil biodiesel: Comparison to soy biodiesel. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:403057. [PMID: 31585630 PMCID: PMC6945748 DOI: 10.1016/j.mrgentox.2019.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Canola (or rapeseed) oil and waste vegetable oil (WVO) are used commonly to make biodiesel fuels composed completely from these oils (B100) or as blends with petroleum diesel (B0). However, no studies have reported the mutagenic potencies of the particulate matter with diameter ≤2.5 μm (PM2.5) or the mutagenicity emission factors, such as revertants/MJthermal (rev/MJth) for these biodiesel emissions. Using strains TA98 and TA100 with the Salmonella (Ames) mutagenicity assay, we determined these metrics for organic extracts of PM2.5 of emissions from biodiesel containing 5% soy oil (soy B5); 5, 20, 50, and 100% canola (canola B5, B20, B50, B100), and 100% waste vegetable oil (WVO B100). The mutagenic potencies (rev/mg PM2.5) of the canola B100 and WVO B100 emissions were generally greater than those of B0, whereas the mutagenicity emission factors (rev/MJth, rev/kg fuel, and rev/m3) were less, reflecting the lower PM emissions of the biodiesels relative to B0. Nearly all the rev/mg PM2.5 and rev/MJth values were greater in TA98 with S9 than without S9, indicating a relatively greater role for polycyclic aromatic hydrocarbons, which require S9, than nitroarenes, which do not. In TA100 -S9, the rev/mg PM2.5 and rev/MJth for the biodiesels were generally ≥ to those of B0, indicating that most of these biodiesels produced more direct-acting, base-substitution mutagenic activity than did B0. For B100 biodiesels and petroleum diesel, the rev/MJth in TA98 + S9 ranked: petroleum diesel > canola > WVO > soy. The diesel emissions generally had rev/MJth values orders of magnitude higher than those of large utility-scale combustors (natural gas, coal, oil, or wood) but orders of magnitude lower than those of inefficient open burning (e.g., residential wood fireplaces). These comparative data of the potential health effects of a variety of biodiesel fuels will help inform the life-cycle assessment and use of biodiesel fuels.
Collapse
Affiliation(s)
- David M DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Esra Mutlu
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Sarah H Warren
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Charly King
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - M Ian Gilmour
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - William P Linak
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
21
|
Novotná B, Sikorová J, Milcová A, Pechout M, Dittrich L, Vojtíšek-Lom M, Rossner P, Brzicová T, Topinka J. The genotoxicity of organic extracts from particulate truck emissions produced at various engine operating modes using diesel or biodiesel (B100) fuel: A pilot study. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:403034. [DOI: 10.1016/j.mrgentox.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
|
22
|
Benvindo-Souz M, Borges RE, Pacheco SM, Santos LRDS. Micronucleus and other nuclear abnormalities in exfoliated cells of buccal mucosa of bats at different trophic levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:120-127. [PMID: 30690342 DOI: 10.1016/j.ecoenv.2019.01.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The micronucleus (MN) test in exfoliated cells of the buccal mucosa is a relatively non-invasive method for the monitoring of populations exposed to genotoxic risks. In this study, the MN test was used as bats conservation strategy. The highest frequencies of micronuclei were recorded in the frugivorous bats sampled in both urban and agricultural environments, as well as in insectivorous bats from the urban zone. Female of this group (insectivorous) presented higher frequency of MN when compared to males. Other guilds showed no difference in gender assessments in each environment, as well as in the correlation between weight and MN. In addition to micronuclei, a number of other types of nuclear abnormality were recorded, including binucleated cells and karyolysis in the frugivores from the agricultural environment. Binucleated cells were also relatively common in urban frugivores and insectivores, and karyolysis was common in insectivores. Nectarivorous bats did not exhibit a significant increase in any type of nuclear abnormality in either environment. In summary, study results indicate that buccal mucosa of bats is a sensitive site for detecting micronuclei and other nuclear abnormalities. However, more research is needed to indicate whether xenobiotic agents are affecting this cellular integrity.
Collapse
Affiliation(s)
| | | | - Susi Missel Pacheco
- Research Department, Institute Sauver and PCM Brazil, Porto Alegre, RS, Brazil
| | | |
Collapse
|
23
|
León-Mejía G, Luna-Rodríguez I, Trindade C, Oliveros-Ortíz L, Anaya-Romero M, Luna-Carrascal J, Navarro-Ojeda N, Ruiz-Benitez M, Franco-Valencia K, Da Silva J, Henriques JAP, Muñoz-Acevedo A, Quintana-Sosa M. Cytotoxic and genotoxic effects in mechanics occupationally exposed to diesel engine exhaust. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:264-273. [PMID: 30612014 DOI: 10.1016/j.ecoenv.2018.12.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Diesel engine exhaust (DEE), which is the product of diesel combustion, is considered carcinogenic in humans. It comprises toxic gases, polycyclic aromatic hydrocarbons (PAHs) and particulate matter which can reach the pulmonary parenchyma and trigger various diseases, including cancer. The aim of the present study was to evaluate the potential cytotoxic and genotoxic effects of DEE exposure on peripheral blood and buccal epithelial cells in mechanics occupationally exposed to DEE. We recruited 120 exposed mechanics and 100 non-exposed control individuals. Significant differences were observed between the two groups in terms of percentage of tail DNA and damage index (DI) in the alkaline comet assay; levels of biomarkers by cytokinesis-block micronucleus cytome (CBMN-Cyt) assay; frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD) and apoptotic cells (APOP) and levels of biomarkers for micronucleus, karyorrhexis (KRX), karyolysis (KRL) and condensed chromatin (CC) by the buccal micronucleus cytome (BM-Cyt) assay. A significant and positive correlation was found between the frequency of MN in lymphocytes and buccal cells in the exposed group. Also, there was a significant correlation between age and percentage of tail DNA and DI in the comet assay, APOP and MN in the CBMN-Cyt assay and NBUD and MN in the BM-Cyt assay. Additionally, we found a positive and significant correlation of MN frequency in lymphocytes and buccal cells and age and MN frequency in lymphocytes with the time of service (years). Regarding lifestyle-related factors, a significant correlation was observed between meat and vitamin consumption and NBUD formation on CBMN-Cyt and between meat consumption and MN formation on CBMN-Cyt. Of the BM-Cyt biomarkers, there was a correlation between alcohol consumption and NBUD formation and between binucleated cell (BN), pyknosis (PYC), CC and KRL occurrence and family cancer history. These results are the first data in Colombia on the cytotoxic and genotoxic effects induced by continuous exposure to DEE and thus showed the usefulness of biomarkers of the comet, CBMN-Cyt and BM-Cyt assays for human biomonitoring and evaluation of cancer risk in the exposed populations.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| | - Ibeth Luna-Rodríguez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Ludis Oliveros-Ortíz
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Marco Anaya-Romero
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Jaime Luna-Carrascal
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Nebis Navarro-Ojeda
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco-Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Juliana Da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Amner Muñoz-Acevedo
- Grupo de Investigación en Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - M Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| |
Collapse
|
24
|
Toxicity of Exhaust Fumes (CO, NOx) of the Compression-Ignition (Diesel) Engine with the Use of Simulation. SUSTAINABILITY 2019. [DOI: 10.3390/su11082188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays more and more emphasis is placed on the protection of the natural environment. Scientists notice that global warming is associated with an increase of carbon dioxide emissions, which results inter alia from the combustion of gasoline, oil, and coal. To reduce the problem of pollution from transport, the EU is introducing increasingly stringent emission standards which should correspond to sustainable conditions of the environment during the operation of motor vehicles. The emissivity value of substances, such as nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), as well as solid particles, was determined. The aim of this paper was to examine, by means of simulation in the Scilab program, the exhaust emissions generated by the 1.3 MultiJet Fiat Panda diesel engine, and in particular, carbon monoxide and nitrogen oxides (verified on the basis of laboratory tests). The Fiat Panda passenger car was selected for the test. The fuels supplied to the tested engine were diesel and FAME (fatty acid methyl esters). The Scilab program, which simulated the diesel engine operation, was the tool for analyzing the exhaust toxicity test. The combustion of biodiesel does not necessarily mean a smaller amount of exhaust emissions, as could be concluded on the basis of information contained in the subject literature. The obtained results were compared with the currently valid EURO-6 standard, for which the limit value for CO is 0.5 g/km, and for NOx − 0.08 g/km, and it can be seen that the emission of carbon monoxide did not exceed the standards in any case examined. Unfortunately, when analyzing the total emissions of nitrogen oxides, the situation was completely the opposite and the emissions were exceeded by 20–30%.
Collapse
|
25
|
Magnusson P, Dziendzikowska K, Oczkowski M, Øvrevik J, Eide DM, Brunborg G, Gutzkow KB, Instanes C, Gajewska M, Wilczak J, Sapierzynski R, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Duale N, Gromadzka-Ostrowska J, Myhre O. Lung effects of 7- and 28-day inhalation exposure of rats to emissions from 1st and 2nd generation biodiesel fuels with and without particle filter - The FuelHealth project. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:8-20. [PMID: 30685595 DOI: 10.1016/j.etap.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Increased use of 1st and 2nd generation biofuels raises concerns about health effects of new emissions. We analyzed cellular and molecular lung effects in Fisher 344 rats exposed to diesel engine exhaust emissions (DEE) from a Euro 5-classified diesel engine running on B7: petrodiesel fuel containing 7% fatty acid methyl esters (FAME), or SHB20 (synthetic hydrocarbon biofuel): petrodiesel fuel containing 7% FAME and 13% hydrogenated vegetable oil. The Fisher 344 rats were exposed for 7 consecutive days (6 h/day) or 28 days (6 h/day, 5 days/week), both with and without diesel particle filter (DPF) treatment of the exhaust in whole body exposure chambers (n = 7/treatment). Histological analysis and analysis of cytokines and immune cell numbers in bronchoalveolar lavage fluid (BALF) did not reveal adverse pulmonary effects after exposure to DEE from B7 or SHB20 fuel. Significantly different gene expression levels for B7 compared to SHB20 indicate disturbed redox signaling (Cat, Hmox1), beta-adrenergic signaling (Adrb2) and xenobiotic metabolism (Cyp1a1). Exhaust filtration induced higher expression of redox genes (Cat, Gpx2) and the chemokine gene Cxcl7 compared to non-filtered exhaust. Exposure time (7 versus 28 days) also resulted in different patterns of lung gene expression. No genotoxic effects in the lungs were observed. Overall, exposure to B7 or SHB20 emissions suggests only minor effects in the lungs.
Collapse
Affiliation(s)
- Pål Magnusson
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Dag M Eide
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Gunnar Brunborg
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Kristine B Gutzkow
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Christine Instanes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Rafał Sapierzynski
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Jan Kochanowski University, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Nur Duale
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Oddvar Myhre
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway.
| |
Collapse
|
26
|
Hue-Beauvais C, Aujean E, Miranda G, Ralliard-Rousseau D, Valentino S, Brun N, Ladebese S, Péchoux C, Chavatte-Palmer P, Charlier M. Impact of exposure to diesel exhaust during pregnancy on mammary gland development and milk composition in the rabbit. PLoS One 2019; 14:e0212132. [PMID: 30763367 PMCID: PMC6375667 DOI: 10.1371/journal.pone.0212132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 01/03/2023] Open
Abstract
Exposure to fine-particulate air pollution is a major global health concern because it is associated with reduced birth weight and an increased risk of cardiovascular disease. Here we have investigated the potential for exposure to diesel exhaust during pregnancy to influence mammary gland development and milk composition. Female rabbits were therefore exposed by nose-only inhalation to either diluted diesel exhaust fumes (1 mg/m3) or clean air for 2h/day, 5 days/week, from the 3rd to the 27th days of pregnancy. On Day 28 of pregnancy, mammary glands were collected from twelve females (six controls and six diesel-exposed) and assessed for morphological and functional alterations. Milk samples were collected from eighteen dams (nine controls and nine diesel-exposed) during early (days 2 to 4) and established (days 13 to 16) lactation to verify the composition of fatty acids and major proteins and leptin levels. The mammary alveolar lumina contained numerous fat globules, and stearoyl CoA reductase expression was higher in mammary epithelia from diesel exhaust-exposed rabbits, which together suggested increased mammary lipid biosynthesis. Gas chromatography analysis of the composition of milk fatty acids revealed a sharp rise in the total fatty acid content, mainly due to monounsaturated fatty acids. Liquid chromatography-mass spectrometry analysis of milk samples enabled identification and quantification of the main rabbit milk proteins and their main phosphorylated isoforms, and revealed important changes to individual casein and whey protein contents and to their most phosphorylated isoforms during early lactation. Taken together, these findings suggest that repeated daily exposure to diesel exhaust fumes during pregnancy at urban pollution levels can influence lipid metabolism in the mammary gland and the lipid and protein composition of milk. As milk may contribute to metabolic programming, such alterations affecting milk composition should be taken into account from a public health perspective.
Collapse
Affiliation(s)
- Cathy Hue-Beauvais
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Etienne Aujean
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Guy Miranda
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Sarah Valentino
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - Nicolas Brun
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stessy Ladebese
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christine Péchoux
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Madia Charlier
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
27
|
Sarkar P. Response of DNA damage genes in acrolein-treated lung adenocarcinoma cells. Mol Cell Biochem 2018; 450:187-198. [PMID: 29968166 DOI: 10.1007/s11010-018-3385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Acrolein is a α-β-unsaturated aldehyde and is toxic to human upon its exposure from the environment. Sources of exposure to acrolein can be from heating cooking oil, automobile exhaust, tobacco smoke, and plastic waste. Acrolein exposure to lung is a major concern because of its volatile nature and due to its presence in the urban atmospheric air. Acrolein being highly reactive forms DNA and protein adducts, thereby making the cells vulnerable to long-term damage. Such long-term effect can lead to high susceptibility towards malignant transformation as has been reported in cigarette smokers. The response of DNA damaging genes by acrolein can perhaps give an insight to the cause of damage in the DNA by acrolein. The aim of this study was to examine the response of the DNA damage responsive genes by acrolein in A549 lung adenocarcinoma cells. Acrolein treatment at IC50 concentration showed a robust response of the DNA repair genes but eventually failed to rescue the cells from undergoing apoptosis. The cells pretreated with acrolein and followed by growing the same cells in fresh medium in the absence of acrolein did not help the cells to proliferate. These results conclude that exposure to acrolein marks long-lasting damage to DNA, irrespective of the DNA repair response.
Collapse
Affiliation(s)
- Poonam Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA. .,Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates St. Feigin Center, Houston, TX, 77030, USA.
| |
Collapse
|