1
|
Purchase D, Abbasi G, Bisschop L, Chatterjee D, Ekberg C, Ermolin M, Fedotov P, Garelick H, Isimekhai K, Kandile NG, Lundström M, Matharu A, Miller BW, Pineda A, Popoola OE, Retegan T, Ruedel H, Serpe A, Sheva Y, Surati KR, Walsh F, Wilson BP, Wong MH. Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC Technical Report). PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare Earth elements), and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern, due to widespread illegal shipments; weak environmental, as well as health and safety, regulations; lack of technology; and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan, and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora, and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders seeking to devise integrated management strategies to tackle this global environmental concern.
Collapse
Affiliation(s)
- Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology , Middlesex University , The Burroughs , London NW4 4BT , UK
| | | | - Lieselot Bisschop
- Erasmus Initiative on Dynamics of Inclusive Prosperity & Erasmus School of Law , Erasmus University Rotterdam , P.O. Box 1738 – 3000 DR , Rotterdam , Netherlands
| | - Debashish Chatterjee
- Faculty of Analytical Chemistry , University of Kalyani , Kalyani , Nadia , 741235 , India
| | - Christian Ekberg
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling , Chalmers University of Technology , SE-41296 , Göteborg , Sweden
| | - Mikhail Ermolin
- National University of Science and Technology “MISiS” , 4 Leninsky Prospect , Moscow , 119049 , Russia
| | - Petr Fedotov
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry , Russian Academy of Sciences , 19 Kosygin Street , Moscow , 119991 , Russia
| | - Hemda Garelick
- Department of Natural Sciences, Faculty of Science and Technology , Middlesex University , The Burroughs , London NW4 4BT , UK
| | - Khadijah Isimekhai
- Ateda Ventures Limited , P.P. Box 13394 , Benin City , Edo State , Nigeria
| | - Nadia G. Kandile
- Department of Chemistry, Faculty of Women , Ain Shams University , Heliopolis , 11757 , Cairo , Egypt
| | - Mari Lundström
- Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering , Aalto University , P.O. Box 16200 , AALTO , Finland
| | - Avtar Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry , University of York , York , YO10 5DD , UK
| | | | - Antonio Pineda
- Departamento de Química Orgánica , Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IVa, Km 396 , Córdoba , E-14014 , Spain
| | - Oluseun E. Popoola
- Department of Chemical Science , Yaba College of Technology , Lagos , Nigeria
| | - Teodora Retegan
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling , Chalmers University of Technology , SE-41296 , Göteborg , Sweden
| | - Heinz Ruedel
- Department Environmental Specimen Bank and Elemental Analysis , Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME) , Schmallenberg , 57392 , Germany
| | - Angela Serpe
- Department of Civil and Environmental Engineering and Architecture (DICAAR) and INSTM Unit , University of Cagliari and Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR) , Via Marengo 2 , Cagliari , 09123 , Italy
| | | | - Kiran R. Surati
- Department of Chemistry , Sardar Patel University , Vallabh Vidyanagar , Anand , Gujarat , 388120 , India
| | - Fiona Walsh
- Maynooth University , Maynooth , Co Kildare , Ireland
| | - Benjamin P. Wilson
- Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering , Aalto University , P.O. Box 16200 , AALTO , Finland
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control , Southern University of Science and Technology, Shenzhen, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong , Tai Po , Hong Kong , China
| |
Collapse
|
3
|
Jiang B, Adebayo A, Jia J, Xing Y, Deng S, Guo L, Liang Y, Zhang D. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:187-195. [PMID: 30240992 DOI: 10.1016/j.jhazmat.2018.08.060] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/05/2018] [Accepted: 08/18/2018] [Indexed: 05/12/2023]
Abstract
Heavy metal contamination is a serious problem worldwide threatening soil environment and human health. In the present study, concentrations of 6 heavy metals at an electronic waste (e-waste) site in Nigeria were correlated to their mobility, showing distinct distribution pattern between surface soils and subsoils. Proteobacteria, Firmicutes, Acidobacteria and Planctomycetes dominated the indigenous soil microbial communities, and there was significant discrimination of bacterial taxonomic composition between the heavy metal contaminated and uncontaminated areas. The abundance of most bacterial taxa changed with heavy metal contamination level to different extent. The multivariate regression tree (MRT) analyses illustrated that main environmental variables influencing bacterial taxonomic composition included soil texture (31%) and organic carbon (14%), whereas microbial diversity was affected by soil pH (32%) and soil texture (14%). Our results surprisingly indicated that soil properties were more influential in determining soil bacterial composition and diversity than heavy metals even at the e-waste site which was seriously contaminated by heavy metals. The present study contributes to a deeper insight into the key environmental variables shaping the diversity and composition of soil microbes at heavy metal contaminated e-waste sites.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Adedoyin Adebayo
- Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
| | - Songqiang Deng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Limin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Yuting Liang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, PR China.
| |
Collapse
|
4
|
Chen H, Huang G, Zhou H, Zhou X, Xu H. Highly efficient triazolone/metal ion/polydopamine/MCM-41 sustained release system with pH sensitivity for pesticide delivery. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180658. [PMID: 30109110 PMCID: PMC6083694 DOI: 10.1098/rsos.180658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/04/2018] [Indexed: 05/03/2023]
Abstract
MCM-41 was prepared through the sol-gel method and encapsulated by polydopamine (PDA) before being coordinated with metal ions to form a highly efficient sustained release system (M-PDA-MCM-41) for triazolone delivery. The characterization results confirmed the existence of the coordination bond between the PDA layer and triazolone through the bridge effect from metal ions, which enhanced the interaction between PDA-MCM-41 and triazolone. The adsorption capacity of Fe-PDA-MCM-41 increased up to 173 mg g-1, which was 160% more than that of MCM-41. The sustained release performance of M-PDA-MCM-41 in different pH values was investigated. Under the conditions of pH ≤7, the release speed of triazolone increased with pH decreasing, whereas its release speed in the weak base condition was slower than in the neutral condition. Therefore, the as-synthesized system showed significant pH-sensitivity in the sustained release process, indicating that the sustained release system can be well stored in the neutral or basic environment and activated in the acid environment. Their sustained release curves described by the Korsmeyer-Peppas equation at pH 7 showed the same behaviour, indicating that PDA decoration or metal ion coordination only increases the steric hindrance and the interaction between carrier and triazolone instead of changing the original structure of the pure MCM material in accordance with X-ray diffraction and Brunauer-Emmett-Teller analysis results.
Collapse
Affiliation(s)
- Huayao Chen
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Efficient Use of Agricultural Chemicals, Guangzhou, People's Republic of China
| | - Guozhi Huang
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Efficient Use of Agricultural Chemicals, Guangzhou, People's Republic of China
| | - Hongjun Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Efficient Use of Agricultural Chemicals, Guangzhou, People's Republic of China
| | - Xinhua Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Efficient Use of Agricultural Chemicals, Guangzhou, People's Republic of China
| | - Hua Xu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Efficient Use of Agricultural Chemicals, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Lin Z, Zhen Z, Chen C, Li Y, Luo C, Zhong L, Hu H, Li J, Zhang Y, Liang Y, Yang J, Zhang D. Rhizospheric effects on atrazine speciation and degradation in laterite soils of Pennisetum alopecuroides (L.) Spreng. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12407-12418. [PMID: 29460244 DOI: 10.1007/s11356-018-1468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a worldwide-used herbicide and often detected in agricultural soils and groundwater at concentrations above the permitted limit, because of its high mobility, persistence, and massive application. This study applied pot experiments to investigate the atrazine contents and speciation during the phytoremediation process by Pennisetum alopecuroides (L.) Spreng. in laterite soils. From the change of the total atrazine and bioavailable atrazine measured by diffusive gradients in thin film (DGT), P. alopecuroides significantly improved atrazine degradation efficiency from 15.22 to 51.46%, attributing to the increasing bioavailable atrazine in rhizosphere. Only a small amount of atrazine was taken up by P. alopecuroides root and the acropetal translocation from roots to shoots was limited. The atrazine speciation was significantly different between rhizosphere and non-rhizosphere, attributing to the declining pH and organic matters in rhizosphere. The relationship between pH and soil-bound/humus-fixed atrazine illustrated the pH-dependant release of the atrazine from soils and the competition between humus adsorption and uptake by P. alopecuroides. The present study reveals the important roles of soil pH and organic matters in atrazine speciation and availability in laterite soils, and provides new insights in the rhizospheric effects on effective phytoremediation of atrazine.
Collapse
Affiliation(s)
- Zhong Lin
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Zhen Zhen
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Changer Chen
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91, Stockholm, Sweden
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chunling Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Laiyuan Zhong
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Hanqiao Hu
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jin Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yueqin Zhang
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yanqiu Liang
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jiewen Yang
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|