1
|
Aebisher D, Woźnicki P, Bartusik-Aebisher D. Photodynamic Therapy and Adaptive Immunity Induced by Reactive Oxygen Species: Recent Reports. Cancers (Basel) 2024; 16:967. [PMID: 38473328 DOI: 10.3390/cancers16050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer is one of the most significant causes of death worldwide. Despite the rapid development of modern forms of therapy, results are still unsatisfactory. The prognosis is further worsened by the ability of cancer cells to metastasize. Thus, more effective forms of therapy, such as photodynamic therapy, are constantly being developed. The photodynamic therapeutic regimen involves administering a photosensitizer that selectively accumulates in tumor cells or is present in tumor vasculature prior to irradiation with light at a wavelength corresponding to the photosensitizer absorbance, leading to the generation of reactive oxygen species. Reactive oxygen species are responsible for the direct and indirect destruction of cancer cells. Photodynamically induced local inflammation has been shown to have the ability to activate an adaptive immune system response resulting in the destruction of tumor lesions and the creation of an immune memory. This paper focuses on presenting the latest scientific reports on the specific immune response activated by photodynamic therapy. We present newly discovered mechanisms for the induction of the adaptive response by analyzing its various stages, and the possible difficulties in generating it. We also present the results of research over the past 10 years that have focused on improving the immunological efficacy of photodynamic therapy for improved cancer therapy.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
2
|
Buján Bonino C, Rodríguez-Blanco I, Sánchez-Aguilar Rojas D, Vázquez Veiga HA, Flórez Á. Topical and Intralesional Immunotherapy for the Management of Skin Cancer in Special Locations: Lips and Eyelids. Cancers (Basel) 2023; 15:5018. [PMID: 37894385 PMCID: PMC10604909 DOI: 10.3390/cancers15205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The use of topical and intralesional immunotherapy in the treatment of cutaneous malignant neoplasia in sensitive areas such as the lips and eyelids is discussed. Surgery may not be feasible or may result in deformities in these areas, making alternative treatment options necessary. A narrative literature review was conducted using MEDLINE (PubMed) as the main literature database, collecting available evidence of experiences with various topical and intralesional therapies in the aforementioned anatomical locations, ranging from case reports to clinical trials. The clearance rates and potential adverse reactions of therapeutic options such as imiquimod 5%, 5-fluorouracil (5-FU), photodynamic therapy (PDT), ingenol mebutate (IM), diclofenac, intralesional methotrexate, and interferon are reviewed. Although limited by their heterogeneity and the scarcity of clinical trials, these studies point towards promising response rates and minimal adverse effects, making these treatments viable options in selected cases.
Collapse
Affiliation(s)
- Cecilia Buján Bonino
- Department of Dermatology, University Hospital of Santiago de Compostela, 36001 Santiago de Compostela, Spain
| | - Isabel Rodríguez-Blanco
- Department of Dermatology, University Hospital of Santiago de Compostela, 36001 Santiago de Compostela, Spain
| | | | - Hugo A. Vázquez Veiga
- Department of Dermatology, University Hospital of Santiago de Compostela, 36001 Santiago de Compostela, Spain
| | - Ángeles Flórez
- Department of Dermatology, University Hospital of Pontevedra, 36162 Pontevedra, Spain
- DIPO Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde—Universidade de Vigo (SERGAS—UVIGO), 36213 Vigo, Spain
| |
Collapse
|
3
|
Zheng J, Liu W, Zhou Z, Cao Z, Zhao Z, Wang X, Li M, Zhang G. Successful treatment of non-melanoma skin cancer in three patients with Xeroderma Pigmentosum by modified ALA-PDT. Photodiagnosis Photodyn Ther 2023; 43:103694. [PMID: 37422200 DOI: 10.1016/j.pdpdt.2023.103694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Xeroderma pigmentosum(XP) is a rare autosomal recessive genodermatosis. Individuals with XP are characterized by severe skin sensitivity to sunlight, and more susceptible to the development of skin malignancies in sun-exposed regions. We report the experience of modified 5-aminolaevulinic acid photodynamic therapy (M-PDT) in the treatment of three children with XP. They all developed multiple freckle-like hyperpigmented papules and plaques on the face from an early age. Multiple cutaneous squamous cell carcinoma (cSCC) and actinic keratosis (AK) were developed in case 1 and case 2, and basal cell carcinoma (BCC) was observed in case 3. Sanger sequencing of targeted gene identified that case 1 and case 3 carried compound heterozygous mutations, and case 2 carried a homozygous mutation in the XPC gene. After multiple courses of M-PDT, the lesions were removed with mild adverse reactions, nearly painless and satisfactory safety.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Weiying Liu
- Department of Dermatology, Hunan Aerospace Hospital, Changsha Hunan, China
| | - Zhongxia Zhou
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zijun Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ming Li
- Department of Dermatology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
4
|
Algorri JF, López-Higuera JM, Rodríguez-Cobo L, Cobo A. Advanced Light Source Technologies for Photodynamic Therapy of Skin Cancer Lesions. Pharmaceutics 2023; 15:2075. [PMID: 37631289 PMCID: PMC10458875 DOI: 10.3390/pharmaceutics15082075] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Photodynamic therapy (PDT) is an increasingly popular dermatological treatment not only used for life-threatening skin conditions and other tumors but also for cosmetic purposes. PDT has negligible effects on underlying functional structures, enabling tissue regeneration feasibility. PDT uses a photosensitizer (PS) and visible light to create cytotoxic reactive oxygen species, which can damage cellular organelles and trigger cell death. The foundations of modern photodynamic therapy began in the late 19th and early 20th centuries, and in recent times, it has gained more attention due to the development of new sources and PSs. This review focuses on the latest advancements in light technology for PDT in treating skin cancer lesions. It discusses recent research and developments in light-emitting technologies, their potential benefits and drawbacks, and their implications for clinical practice. Finally, this review summarizes key findings and discusses their implications for the use of PDT in skin cancer treatment, highlighting the limitations of current approaches and providing insights into future research directions to improve both the efficacy and safety of PDT. This review aims to provide a comprehensive understanding of PDT for skin cancer treatment, covering various aspects ranging from the underlying mechanisms to the latest technological advancements in the field.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Luís Rodríguez-Cobo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Adolfo Cobo
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
5
|
Foglar M, Aumiller M, Bochmann K, Buchner A, El Fahim M, Quach S, Sroka R, Stepp H, Thon N, Forbrig R, Rühm A. Interstitial Photodynamic Therapy of Glioblastomas: A Long-Term Follow-up Analysis of Survival and Volumetric MRI Data. Cancers (Basel) 2023; 15:cancers15092603. [PMID: 37174068 PMCID: PMC10177153 DOI: 10.3390/cancers15092603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The treatment of glioblastomas, the most common primary malignant brain tumors, with a devastating survival perspective, remains a major challenge in medicine. Among the recently explored therapeutic approaches, 5-aminolevulinic acid (5-ALA)-mediated interstitial photodynamic therapy (iPDT) has shown promising results. METHODS A total of 16 patients suffering from de novo glioblastomas and undergoing iPDT as their primary treatment were retrospectively analyzed regarding survival and the characteristic tissue regions discernible in the MRI data before treatment and during follow-up. These regions were segmented at different stages and were analyzed, especially regarding their relation to survival. RESULTS In comparison to the reference cohorts treated with other therapies, the iPDT cohort showed a significantly prolonged progression-free survival (PFS) and overall survival (OS). A total of 10 of 16 patients experienced prolonged OS (≥ 24 months). The dominant prognosis-affecting factor was the MGMT promoter methylation status (methylated: median PFS of 35.7 months and median OS of 43.9 months) (unmethylated: median PFS of 8.3 months and median OS of 15.0 months) (combined: median PFS of 16.4 months and median OS of 28.0 months). Several parameters with a known prognostic relevance to survival after standard treatment were not found to be relevant to this iPDT cohort, such as the necrosis-tumor ratio, tumor volume, and posttreatment contrast enhancement. After iPDT, a characteristic structure (iPDT remnant) appeared in the MRI data in the former tumor area. CONCLUSIONS In this study, iPDT showed its potential as a treatment option for glioblastomas, with a large fraction of patients having prolonged OS. Parameters of prognostic relevance could be derived from the patient characteristics and MRI data, but they may partially need to be interpreted differently compared to the standard of care.
Collapse
Affiliation(s)
- Marco Foglar
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maximilian Aumiller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Bochmann
- Max Planck Institute for Psychiatry, Max Planck Society, 80804 Munich, Germany
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mohamed El Fahim
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
6
|
Hayashi T, Okamoto K, Yamada S, Takatori H, Ninomiya I, Mizukoshi E, Yamashita T. Esophago-aortic fistula of esophageal cancer after chemotherapy, proton therapy and salvage photodynamic therapy: a rescued case. Clin J Gastroenterol 2022; 15:1029-1034. [PMID: 36070174 DOI: 10.1007/s12328-022-01694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
We describe a case of esophageal cancer after proton therapy that resulted in an esophagoaortic fistula after photodynamic therapy (PDT). A 49-year-old woman with esophageal cancer (cT1bN0M0, cStage I) underwent chemotherapy (5-FU and cisplatin) and radiotherapy (proton therapy to the cancer lesion after X-ray radiotherapy to the regional lymph nodes). Despite a complete response of the primary tumor, local recurrence was observed 10 months after treatment. PDT was performed as a salvage treatment. She was transported to the emergency department in a state of hemorrhagic shock due to hematemesis 50 days after PDT. We diagnosed an esophagoaortic fistula caused by esophageal perforation, and resuscitative endovascular balloon occlusion of the aorta and thoracic endovascular aortic repair were performed. The patient was successfully rescued after three surgeries (esophagectomy, extraesophageal fistula, aortic vascular replacement, and gastrointestinal reconstruction). In addition to X-ray radiotherapy before photodynamic therapy, proton therapy in combination with the vascular shutdown effects of PDT may have caused ischemia of the esophagus, resulting in an esophagoaortic fistula. When performing PDT, the type of radiation therapy and the location of the lesion should be examined to assess the risk of penetration or perforation.
Collapse
Affiliation(s)
- Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Koichi Okamoto
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shinya Yamada
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
7
|
Zeng Q, Liu Z, Niu T, He C, Qu Y, Qian Z. Application of nanotechnology in CAR-T-cell immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Wysocki M, Czarczynska-Goslinska B, Ziental D, Michalak M, Güzel E, Sobotta L. Excited state and reactive oxygen species against cancer and pathogens: a review on sonodynamic and sono-photodynamic therapy. ChemMedChem 2022; 17:e202200185. [PMID: 35507015 DOI: 10.1002/cmdc.202200185] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/28/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic and sonodynamic therapy are therapies having great potential in the treatment of bacterial infections and cancer. Their background is associated with photo- and sonosensitizers - substances that can be excited when exposed to light or ultrasound. These sensitizers belong to a variety of compounds groups, including porphyrins, porphyrazines, and phthalocyanines. Releasing the energy when returning to the ground state can occur in the manner of transferring it to oxygen molecules, leading to reactive oxygen species able to disrupt membranes of bacterial and cancer cells, leaving the organism's cells unaffected. In recent years, the number of reports on numerous sensitizers being effective has been constantly growing. Therefore, the development of this field may prove beneficial for dealing with cancer and microbes. This review describes the development of photodynamic and sonodynamic therapy, as well as their combination, with emphasize on sonodynamic therapy and its potential in the treatment of cancer and bacterial infections.
Collapse
Affiliation(s)
- Marcin Wysocki
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Beata Czarczynska-Goslinska
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Pharmaceutical Technology, POLAND
| | - Daniel Ziental
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Maciej Michalak
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Emre Güzel
- Sakarya Uygulamali Bilimler Universitesi, Department of Engineering Fundamental Sciences, TURKEY
| | - Lukasz Sobotta
- Uniwersytet Medyczny imienia Karola Marcinkowskiego w Poznaniu, Department of Inorganic and Analytical Chemistry, Grunwaldzka 6, 60780, Poznan, POLAND
| |
Collapse
|
9
|
Locally Injectable Hydrogels for Tumor Immunotherapy. Gels 2021; 7:gels7040224. [PMID: 34842684 PMCID: PMC8628785 DOI: 10.3390/gels7040224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Hydrogel-based local delivery systems provide a good delivery platform for cancer immunotherapy. Injectable hydrogels can directly deliver antitumor drugs to the tumor site to reduce systemic toxicity and achieve low-dose amplification immunotherapy. Therefore, it may overcome the problems of low drug utilization rate and the systemic side effects in cancer immunotherapy through systemic immune drugs, and it provides simple operation and little invasion at the same time. This study aimed to review the research progress of injectable hydrogels in tumor immunotherapy in recent years. Moreover, the local delivery of multiple drugs using injectable hydrogels in tumors is introduced to achieve single immunotherapy, combined chemo-immunotherapy, combined radio-immunotherapy, and photo-immunotherapy. Finally, the application of hydrogels in tumor immunotherapy is summarized, and the challenges and prospects for injectable hydrogels in tumor immunotherapy are proposed.
Collapse
|
10
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
11
|
Hayashi T, Asahina Y, Nakanishi H, Terashima T, Okamoto K, Yamada S, Takatori H, Kitamura K, Mizukoshi E, Ninomiya I, Kaneko S. Evaluation of the efficacy and safety of salvage photodynamic therapy by talaporfin sodium for cervical esophageal cancers and lesions larger than 3 cm. Esophagus 2021; 18:645-654. [PMID: 33201316 DOI: 10.1007/s10388-020-00799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Salvage photodynamic therapy with talaporfin sodium has a high local control rate for esophageal cancer after definitive chemoradiotherapy. The eligibility criteria for photodynamic therapy include the absence of invasion to the cervical esophagus and a 3 cm maximum longitudinal lesion length. There is little evidence regarding the efficacy and safety of lesions outside the eligibility criteria. This retrospective cohort study evaluated the efficacy and safety of photodynamic therapy of such lesions. METHODS Patients with consecutive lesions between February 2016 and May 2020 (n = 36) were enrolled. The local complete response rates and adverse events were compared between patients with cervical and non-cervical lesions and those with lesions larger and smaller than 3 cm. RESULTS The local complete response rate was 77.8% and was significantly lower in cervical than in non-cervical lesions (20.0% vs 80.6%, p = 0.005). Esophageal stricture, laryngeal pain, and fever were significantly higher in the cervical than in the non-cervical lesion group; however, the detected adverse events were up to grade 2. Laser exposure dose was high in lesions larger than 3 cm (median, 650 vs 400 J; p < 0.001). No significant differences in local complete response rates and adverse effects were noted. One case involving a lesion larger than 3 cm needed balloon dilations for esophageal stricture. CONCLUSIONS Although salvage esophageal photodynamic therapy was effective for local control with acceptable safety after definitive chemoradiotherapy failure, photodynamic therapy toward cervical lesions had a statistically lower local complete response rate. Lesions larger than 3 cm may be considered treatable.
Collapse
Affiliation(s)
- Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Yoshiro Asahina
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroyoshi Nakanishi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takeshi Terashima
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shinya Yamada
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuya Kitamura
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
12
|
Huang X, Lu Y, Guo M, Du S, Han N. Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view. Theranostics 2021; 11:7546-7569. [PMID: 34158866 PMCID: PMC8210617 DOI: 10.7150/thno.56482] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer has been a great threat to humans for decades. Due to the limitations of monotherapy, combinational therapies such as photothermal therapy (PTT) and immunotherapy have gained increasing attention with expectation to overcome the shortfalls of each other and obtain satisfactory therapeutic outcomes. PTT can inhibit primary tumors by thermal ablation but usually fails to achieve complete eradication and cannot prevent metastasis and recurrence. Meanwhile, the efficacy of immunotherapy is usually attenuated by the weak immunogenicity of tumor and the immunosuppressive tumor microenvironment (ITM). Therefore, many recent studies have attempted to synergize PTT with immunotherapy in order to enhance the therapeutic efficacy. In this review, we aim to summarize the cutting-edge strategies in combining nano-based PTT with immunotherapy for cancer treatment. Herein, the combination strategies were mainly classified into four categories, including 1) nano-based PTT combined with antigens to induce host immune responses; 2) nano-based PTT in combination with immune adjuvants acting as in situ vaccines; 3) nano-based PTT synergized with immune checkpoint blockade or other regulators to relieve the ITM; 4) nano-based PTT combined with CAR-T therapy or cytokine therapy for tumor treatment. The characteristics of various photothermal agents and nanoplatforms as well as the immunological mechanisms for the synergism were also introduced in detail. Finally, we discussed the existing challenges and future prospects in combined PTT and immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
13
|
Li B, Zhang X, Lu Y, Zhao L, Guo Y, Guo S, Kang Q, Liu J, Dai L, Zhang L, Fan D, Ji Z. Protein 4.1R affects photodynamic therapy for B16 melanoma by regulating the transport of 5-aminolevulinic acid. Exp Cell Res 2021; 399:112465. [PMID: 33385415 DOI: 10.1016/j.yexcr.2020.112465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Melanoma is the most aggressive malignant tumor of skin cancer as it can grow rapidly and metastasize. Photodynamic therapy (PDT) is a promising cancer ablation method for skin tumors, although it lacks efficiency owing to factors such as tumor characteristics, delivery of photosensitizers, immune response in vivo etc. Extensive investigation of molecules that can potentially modulate treatment efficacy is required. Protein 4.1R is a cytoskeletal protein molecule. Previous studies have shown that protein 4.1R knockdown reduces PDT sensitivity in mouse embryonic fibroblast cells. However, the functional role of protein 4.1R in melanoma is unclear. In this study, we aimed to elucidate the effect of protein 4.1R on PDT for melanoma in mice and the mechanism of anti-tumor immunity. Our results indicated that CRISPR/Cas9-mediated protein 4.1R knockout promotes the proliferation, migration, and invasion of B16 cells. We further investigated the potential mechanism of protein 4.1R on tumor cell PDT sensitivity. Our results showed that protein 4.1R knockout reduced the expression of membrane transporters γ-aminobutyric acid transporter (GAT)-1 and (GAT)-2 in B16 cells, which affected 5-ALA transmembrane transport and reduced the efficiency of PDT on B16 cells. Protein 4.1R knockout downregulated the anti-tumor immune response triggered by PDT in vivo. In conclusion, our data suggest that protein 4.1R is an important regulator in PDT for tumors and may promote the progress and efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Bowen Li
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaolin Zhang
- People's Hospital of Zhengzhou, 33 Huanghe Road, Zhengzhou, 450000, Henan, China
| | - Yu Lu
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Luyang Zhao
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaxin Guo
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuangshuang Guo
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jingjing Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liguo Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dandan Fan
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, 450052, Henan, China.
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
14
|
Wang L, Liu Y, Liu H, Tian H, Wang Y, Zhang G, Lei Y, Xue L, Zheng B, Fan T, Zheng Y, Tan F, Xue Q, Gao S, Li C, He J. The therapeutic significance of the novel photodynamic material TPE-IQ-2O in tumors. Aging (Albany NY) 2020; 13:1383-1409. [PMID: 33472175 PMCID: PMC7835032 DOI: 10.18632/aging.202355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Combination therapies based on photodynamic therapy (PDT) have received much attention in various cancers due to their strong therapeutic effects. Here, we aimed to explore the safety and effectiveness of a new mitochondria-targeting photodynamic material, TPE-IQ-2O, in combination therapies (combined with surgery or immunotherapy). The safety and effectiveness of TPE-IQ-2O PDT were verified with cytotoxicity evaluation in vitro and a zebrafish xenograft model in vivo, respectively. The effectiveness of TPE-IQ-2O PDT combined with surgery or immune checkpoint inhibitors (ICIs) was verified in tumor-bearing mice. Small animal in vivo imaging, immunohistochemistry, and flow cytometry were used to determine the underlying mechanism. TPE-IQ-2O PDT can not only reduce tumor recurrence in surgical treatment but also effectively improve the response to ICIs in immunotherapy without obvious toxicity. It was also found to ameliorate the immunosuppressive tumor microenvironment and promote the antitumor immunity induced by ICIs by increasing CD8+ tumor-infiltrating lymphocyte accumulation. Thus, TPE-IQ-2O PDT is a safe and effective antitumor therapy that can be combined with surgery or immunotherapy.
Collapse
Affiliation(s)
- Liyu Wang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu Liu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yalong Wang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
15
|
Pan Z, Fan J, Xie Q, Zhang X, Zhang W, Ren Q, Li M, Zheng Q, Lu J, Li D. Novel sulfonamide porphyrin TBPoS-2OH used in photodynamic therapy for malignant melanoma. Biomed Pharmacother 2020; 133:111042. [PMID: 33378950 DOI: 10.1016/j.biopha.2020.111042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 12/28/2022] Open
Abstract
The application of photodynamic therapy (PDT) for the treatment of skin diseases has been receiving much attention. Here, we examined the anti-tumor effect of a novel porphyrin-based photosensitizer TBPoS-2OH in the malignant melanoma A375 and B16 cells. TBPoS-2OH has obvious cell photo-cytotoxicity, but it has low cell dark-cytotoxicity. Further research showed that TBPoS-2OH is enriched in lysosomes after being taken up by cells. Subsequently, the apoptotic rates were significantly increased in TBPoS-2OH-treated A375 and B16 cells. The specific mechanism may be that after receiving light stimulation, TBPoS-2OH could effectively increase the level of intracellular reactive oxygen species (ROS), thereby activating mitochondrial apoptosis pathway-related proteins in A375 and B16 cells. We found an increase in the content of cytochrome C in the cytoplasm, and the levels of related proteins, such as cleaved caspase-3, cleaved caspase-9, and cleaved PARP1, were significantly increased in TBPoS-2OH-treated cells. These results indicated that the new compound TBPoS-2OH could be developed and become an alternative drug for the treatment of melanoma. Some reference ideas for the development of new photosensitizers are also provided.
Collapse
Affiliation(s)
- Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Jiaojiao Fan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qi Xie
- Jiangsu College of Nursing, 9 Science and Technology Avenue, Huaian, 223005, Jiangsu, China
| | - Xin Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Wen Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qing Ren
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Jun Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| |
Collapse
|
16
|
Yan J, Wang P, Li L, Zhang L, Zhang G, Tang Y, Wang X. Surgery sequential with 5-Aminolevulinic acid photodynamic therapy for lip squamous cell carcinoma: Two cases reports. Photodiagnosis Photodyn Ther 2020; 32:102043. [PMID: 33010483 DOI: 10.1016/j.pdpdt.2020.102043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Squamous cell carcinoma (SCC) of thelip is conventionally treated by extended surgery or radiotherapy, which may cause deformities and dysfunction due to this special location. Topical 5-Aminolevulinic acid photodynamic therapy (ALA-PDT) for SCC in situ is effective and non-invasive, and may preserve normal morphological structure. However, the effectiveness is limited by tumor size and depth due to the permeability of photosensitizer and penetration depth of the therapeutic light source. We successfully treated two cases of lip invasive SCC (tumor size is 22.4 mm × 16.1 mm × 11.9 mm and 23 mm × 15 mm × 5 mm) with superficial resection surgery to reduce tumor load and sequential ALA-PDT (20 % ALA, 3 h incubation, 200 J/cm2) to remove residual tumor. During the treatment, ultrasonography was used to monitor the tumor invasion depth and assess the therapeutic efficacy. Both cases showed tumor free at 12 months of follow-up. These two cases suggest that ALA-PDT combined with minimal invasive surgery is a viable treatment for special cases of lip SCC.
Collapse
Affiliation(s)
- Jianna Yan
- Department of Dermatology Surgery, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Liang Li
- Department of Dermatology Surgery, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Yichen Tang
- Department of Dermatology Surgery, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
17
|
Salido-Vallejo R, Jiménez-Nájar F, Garnacho-Sucedo G, Vélez A. Combined daylight and conventional photodynamic therapy with 5-aminolaevulinic acid nanoemulsion (BF-200 ALA) for actinic keratosis of the face and scalp: a new and efficient approach. Arch Dermatol Res 2019; 312:675-680. [DOI: 10.1007/s00403-019-02028-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
|
18
|
Jiang Y, Xu C, Leung W, Lin M, Cai X, Guo H, Zhang J, Yang F. Role of Exosomes in Photodynamic Anticancer Therapy. Curr Med Chem 2019; 27:6815-6824. [PMID: 31533597 DOI: 10.2174/0929867326666190918122221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Photodynamic Therapy (PDT) is a promising alternative treatment for malignancies based on photochemical reaction induced by Photosensitizers (PS) under light irradiation. Recent studies show that PDT caused the abundant release of exosomes from tumor tissues. It is well-known that exosomes as carriers play an important role in cell-cell communication through transporting many kinds of bioactive molecules (e.g. lipids, proteins, mRNA, miRNA and lncRNA). Therefore, to explore the role of exosomes in photodynamic anticancer therapy has been attracting significant attention. In the present paper, we will briefly introduce the basic principle of PDT and exosomes, and focus on discussing the role of exosomes in photodynamic anticancer therapy, to further enrich and boost the development of PDT.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China,Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education, The University of Hong Kong, Hong Kong
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Jiyong Zhang
- Shenzhen Maternity and Child Health Care Hospital, Shenzhen 518017, China
| | - Fanwen Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
19
|
Wu H, Minamide T, Yano T. Role of photodynamic therapy in the treatment of esophageal cancer. Dig Endosc 2019; 31:508-516. [PMID: 30667112 DOI: 10.1111/den.13353] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT), a treatment of choice for cancer, induces a photochemical reaction, thereby eradicating tumor cells. This is achieved through the administration of a photosensitizer drug, which is activated with a laser after localization to the tumor mass, and is an approved curative endoscopic ablative treatment for superficial esophageal squamous cell carcinoma (ESCC) in Japan. PDT has been approved for dysplastic Barrett's esophagus and as a palliative treatment for patients with symptomatic obstructive esophageal cancer in US. However, its adverse events and complicated procedure and the development of alternative endoscopic procedures such as endoscopic submucosal dissection, radiofrequency ablation and cryotherapy, have largely limited the practice of PDT in esophageal cancer worldwide. Recently, owing to the invention of second-generation PDT using talaporfin sodium and diode laser, PDT can be performed with less phototoxicity and therefore has regained popularity in the treatment of ESCC. As a salvage treatment for patients with local failure after chemoradiotherapy (CRT), PDT has shown promising complete response with less phototoxicity and shorter sun shade period. In addition, the efficacy and safety of PDT in patients with local failure of ESCC after CRT were shown in several clinical trials. The direction of the study interest of the next-generation PDT is the safety and potential expansion of the indications for its application in the future. This review covers the PDT for the treatment of ESCC and dysplastic Barrett's esophagus, with special focus on the role of PDT in practice for esophageal cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Tatsunori Minamide
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
20
|
Hameed S, Mo S, Mustafa G, Bajwa SZ, Khan WS, Dai Z. Immunological Consequences of Nanoparticle‐Mediated Antitumor Photoimmunotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical EngineeringCollege of EngineeringPeking University Beijing 100871 China
| | - Shanyan Mo
- Department of Biomedical EngineeringCollege of EngineeringPeking University Beijing 100871 China
| | - Ghulam Mustafa
- Department of SciencesBahria University Lahore Lahore 54000 Pakistan
| | - Sadia Z. Bajwa
- Nanobiotech GroupNational Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box No. 577, Jhang Road Faisalabad 44000 Pakistan
| | - Waheed S. Khan
- Nanobiotech GroupNational Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box No. 577, Jhang Road Faisalabad 44000 Pakistan
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking University Beijing 100871 China
| |
Collapse
|
21
|
Mitotic Catastrophe Induced in HeLa Tumor Cells by Photodynamic Therapy with Methyl-aminolevulinate. Int J Mol Sci 2019; 20:ijms20051229. [PMID: 30862116 PMCID: PMC6429057 DOI: 10.3390/ijms20051229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) constitutes a cancer treatment modality based on the administration of a photosensitizer, which accumulates in tumor cells. The subsequent irradiation of the tumoral area triggers the formation of reactive oxygen species responsible for cancer cell death. One of the compounds approved in clinical practice is methyl-aminolevulinate (MAL), a protoporphyrin IX (PpIX) precursor intermediate of heme synthesis. We have identified the mitotic catastrophe (MC) process after MAL-PDT in HeLa human carcinoma cells. The fluorescence microscopy revealed that PpIX was located mainly at plasma membrane and lysosomes of HeLa cells, although some fluorescence was also detected at endoplasmic reticulum and Golgi apparatus. Cell blockage at metaphase-anaphase transition was observed 24 h after PDT by phase contrast microscopy and flow cytometry. Mitotic apparatus components evaluation by immunofluorescence and Western blot indicated: multipolar spindles and disorganized chromosomes in the equatorial plate accompanied with dispersion of centromeres and alterations in aurora kinase proteins. The mitotic blockage induced by MAL-PDT resembled that induced by two compounds used in chemotherapy, taxol and nocodazole, both targeting microtubules. The alterations in tumoral cells provided evidence of MC induced by MAL-PDT, resolving mainly by apoptosis, directly or through the formation of multinucleate cells.
Collapse
|