1
|
Roychowdhury R, Mishra S, Anand G, Dalal D, Gupta R, Kumar A, Gupta R. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: an integrated overview from its biosynthesis to the mode of action. PHYSIOLOGIA PLANTARUM 2024; 176:e14399. [PMID: 38894599 DOI: 10.1111/ppl.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Sapna Mishra
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Debalika Dalal
- Department of Botany, Visva-Bharati Central University, Santiniketan, West Bengal, India
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
2
|
Rahman FU, Khan IA, Aslam A, Liu R, Sun L, Wu Y, Aslam MM, Khan AU, Li P, Jiang J, Fan X, Liu C, Zhang Y. Transcriptome analysis reveals pathogenesis-related gene 1 pathway against salicylic acid treatment in grapevine ( Vitis vinifera L). Front Genet 2022; 13:1033288. [PMID: 36338979 PMCID: PMC9631220 DOI: 10.3389/fgene.2022.1033288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 08/27/2023] Open
Abstract
Salicylic acid (SA) is a well-studied phenolic plant hormone that plays an important role in plant defense against the hemi-biothrophic and biothrophic pathogens and depends on the living cells of host for the successful infection. In this study, a pathogenesis test was performed between Vitis davidii and V. vinifera cultivars against grape white rot disease (Coniella diplodiella). V. davidii was found to be resistant against this disease. SA contents were found to be higher in the resistant grape cultivar after different time points. RNA-seq analysis was conducted on susceptible grapevine cultivars after 12, 24, and 48 h of SA application with the hypothesis that SA may induce defense genes in susceptible cultivars. A total of 511 differentially expressed genes (DEGs) were identified from the RNA-seq data, including some important genes, VvWRKY1/2, VvNPR1, VvTGA2, and VvPR1, for the SA defense pathway. DEGs related to phytohormone signal transduction and flavonoid biosynthetic pathways were also upregulated. The quantitative real-time PCR (qRT-PCR) results of the significantly expressed transcripts were found to be consistent with the transcriptome data, with a high correlation between the two analyses. The pathogenesis-related gene 1 (VvPR1), which is an important marker gene for plant defense, was selected for further promoter analysis. The promoter sequence showed that it contains some important cis-elements (W-box, LS7, as-1, and TCA-element) to recruit the transcription factors VvWRKY, VvNPR1, and VvTGA2 to express the VvPR1 gene in response to SA treatment. Furthermore, the VvPR1 promoter was serially deleted into different fragments (-1,837, -1,443, -1,119, -864, -558, -436, and -192 ) bp and constructed vectors with the GUS reporter gene. Deletion analysis revealed that the VvPR1 promoter between -1837 bp to -558 bp induced significant GUS expression with respect to the control. On the basis of these results, the -558 bp region was assumed to be an important part of the VvPR1 promoter, and this region contained the important cis-elements related to SA, such as TCA-element (-1,472 bp), LS7 (-1,428 bp), and as-1 (-520 bp), that recruit the TFs and induce the expression of the VvPR1 gene. This study expanded the available information regarding SA-induced defense in susceptible grapes and recognized the molecular mechanisms through which this defense might be mediated.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ali Aslam
- Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | - Ruitao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yandi Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Muhammad Muzammal Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Asad Ullah Khan
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Hangzhou, China
| | - Peng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
3
|
Cai C, Zhao Z, Zhang Y, Li M, Li L, Cheng P, Shen W. Molecular Hydrogen Improves Rice Storage Quality via Alleviating Lipid Deterioration and Maintaining Nutritional Values. PLANTS (BASEL, SWITZERLAND) 2022; 11:2588. [PMID: 36235453 PMCID: PMC9571184 DOI: 10.3390/plants11192588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Improvement of the storage quality of rice is a critical challenge for the scientific community. This study assesses the effects of the irrigation with hydrogen nanobubble water (HNW) on the storage quality of rice (Oryza sativa 'Huruan1212'). Compared with ditch water control, after one year of storage at 25 °C and 70% RH, the HNW-irrigated rice had higher contents of essential amino acids, especially lysine. Importantly, the generation of off-flavors in the stored rice was significantly decreased, which was confirmed by the lower levels of volatile substances, including pentanal, hexanal, heptanal, octanal, 1-octen-3-ol, and 2-heptanone. The subsequent results showed that the HNW-irrigated rice not only retained lower levels of free fatty acid values, but also had increased antioxidant capacity and decreased lipoxygenase activity and transcripts, thus resulting in decreased lipid peroxidation. This study opens a new window for the practical application of HNW irrigation in the production and subsequent storage of crops.
Collapse
|
4
|
Wang L, Liu F, Ju L, Xue B, Wang Y, Wang D, Hou D. Genome Structures and Evolution Analysis of Hsp90 Gene Family in Brassica napus Reveal the Possible Roles of Members in Response to Salt Stress and the Infection of Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2022; 13:854034. [PMID: 35463405 PMCID: PMC9022010 DOI: 10.3389/fpls.2022.854034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Heat shock proteins 90 (Hsp90s) are conserved proteins participating in the responses to heat stress and are found to be involved in different kinds of abiotic and biotic stresses. Brassica napus (B. napus) is an important heteropolyploid crop, producing edible oil. Salt stress is one of the most important hazards to the growth of rape in the world, while Sclerotinia stem rot is one of the most serious diseases, caused by Sclerotinia sclerotiorum (S. sclerotiorum). In this study, the evolution of Hsp90 genes and their responses to these two stresses were elucidated. Bioinformatic analysis through the whole genome of B. napus identified 35 Hsp90 gene family members. Five groups were obtained via phylogenetic analysis with the 35 Hsp genes, Hsps from its two ancestor species Brassica rapa, Brassica oleracea, and AtHsps. Gene structure and conservative motif analysis of these 35 Hsps indicated that the Hsps were relatively conservative in each group. Strong collinearity was also detected between the genomes of Brassica rapa, Brassica oleracea and B. napus, along with identifying syntenic gene pairs of Hsps among the three genomes. In addition, whole genome duplication was discovered as the main reason for the generation of BnHsp gene family. The analysis of cis-acting elements indicated that BnHsp90 might be involved in a variety of abiotic and biotic stress responses. Analysis of the expression pattern indicated that BnHsp90 participates in the responses of B. napus to salt stress and the infection of S. sclerotiorum. Fourteen and nine BnHsp90s were validated to be involved in the defense responses of B. napus against salt stress and S. sclerotiorum, respectively. Our results provide new insights for the roles of BnHsp90s in the responses of B. napus to salt stress and S. sclerotiorum.
Collapse
Affiliation(s)
- Long Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fei Liu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Lingyue Ju
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Bing Xue
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yongfeng Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Daojie Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Agriculture, Henan University, Kaifeng, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Thepbandit W, Papathoti NK, Daddam JR, Thumanu K, Siriwong S, Thanh TL, Buensanteai N. Identification of Salicylic Acid Mechanism against Leaf Blight Disease in Oryza sativa by SR-FTIR Microspectroscopic and Docking Studies. Pathogens 2021; 10:652. [PMID: 34074035 PMCID: PMC8225197 DOI: 10.3390/pathogens10060652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
The present study was to investigate the application and mechanism of salicylic acid (SA) as SA-Ricemate for the control of leaf blight disease using a Synchrotron Radiation-based Fourier-Transform Infra-Red (SR-FTIR) microspectroscopy and docking studies. After treating rice plants cv. KDML 105 with SA-Ricemate, the leaves were inoculated with Xanthomonas oryzae pv. oryzae, the causal agent of leaf blight, and disease severity were assessed. The leaves were also used to detect changes in endogenous SA content. The results indicated that SA-Ricemate, as an activated compound, reduced disease severity by 60% at three weeks post-inoculation and increased endogenous content by 50%. The SR-FTIR analysis of changes in the mesophyll of leaves (treated and untreated) showed that the groups of lipids, pectins, and proteins amide I and amide II occurred at higher values, and polysaccharides were shown at lower values in treated compared to untreated. Besides, docking studies were used to model a three-dimensional structure for Pathogenesis-related (PR1b) protein and further identify its interaction with SA. The results showed that ASP28, ARG31, LEU32, GLN97, and ALA93 are important residues that have strong hydrogen bonds with SA. The docking results showed that SA has a good interaction, confirming its role in expression.
Collapse
Affiliation(s)
- Wannaporn Thepbandit
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (W.T.); (N.K.P.)
| | - Narendra Kumar Papathoti
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (W.T.); (N.K.P.)
| | - Jayasimha Rayalu Daddam
- Department of Animal Science, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel;
| | - Kanjana Thumanu
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand; (K.T.); (S.S.)
| | - Supatcharee Siriwong
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand; (K.T.); (S.S.)
| | - Toan Le Thanh
- Department of Plant Protection, Can Tho University, Can Tho City 900000, Vietnam;
| | - Natthiya Buensanteai
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (W.T.); (N.K.P.)
| |
Collapse
|
6
|
Gasmi L, Baek S, Kim JC, Kim S, Lee MR, Park SE, Shin TY, Lee SJ, Parker BL, Kim JS. Gene diversity explains variation in biological features of insect killing fungus, Beauveria bassiana. Sci Rep 2021; 11:91. [PMID: 33420123 PMCID: PMC7794557 DOI: 10.1038/s41598-020-78910-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Beauveria bassiana is a species complex whose isolates show considerable natural genetic variability. However, little is known about how this genetic diversity affects the fungus performance. Herein, we characterized the diversity of genes involved in various mechanisms of the infective cycle of 42 isolates that have different growth rates, thermotolerance and virulence. The analysed genes showed general genetic diversity measured as non-synonymous changes (NSC) and copy number variation (CNV), with most of them being subjected to positive episodic diversifying selection. Correlation analyses between NSC or CNV and the isolate virulence, thermotolerance and growth rate revealed that various genes shaped the biological features of the fungus. Lectin-like, mucin signalling, Biotrophy associated and chitinase genes NSCs correlated with the three biological features of B. bassiana. In addition, other genes (i.e. DNA photolyase and cyclophilin B) that had relatively conserved sequences, had variable CNs across the isolates which were correlated with the variability of either virulence or thermotolerance of B. bassiana isolates. The data obtained is important for a better understanding of population structure, ecological and potential impact when isolates are used as mycoinsecticides and can justify industrialization of new isolates.
Collapse
Affiliation(s)
- Laila Gasmi
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Sehyeon Baek
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Jong Cheol Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Sihyeon Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Mi Rong Lee
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - So Eun Park
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Tae Young Shin
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Se Jin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Bruce L Parker
- Entomology Research Laboratory, University of Vermont, 661 Spear Street, Burlington, VT, 05405-0105, USA
| | - Jae Su Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea.
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54596, Korea.
| |
Collapse
|