1
|
Wang F, Wang J, He Y, Yan Y, Fu D, Rene ER, Singh RP. Effect of different bulking agents on fed-batch composting and microbial community profile. ENVIRONMENTAL RESEARCH 2024; 249:118449. [PMID: 38354880 DOI: 10.1016/j.envres.2024.118449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Jingyao Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yuheng He
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
2
|
Chang H, Zhao Y, Li X, Damgaard A, Christensen TH. Review of inventory data for the biological treatment of sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:66-74. [PMID: 36442328 DOI: 10.1016/j.wasman.2022.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The biological treatment of municipal sewage sludge, including anaerobic digestion and composting, was reviewed with the purpose of establishing inventory data to address all the inputs and outputs related to sludge treatment. We identified 193 scientific papers, resulting in 64 datasets on anaerobic digestion and 35 datasets on composting. For anaerobic digestion, biogas production varied significantly (up to a factor of four) depending on the sludge. A useful correlation was identified between the amount of methane produced and the degradation of volatile solids. According to statistical tests, no significant differences were found in biogas production for mesophilic and thermophilic digesters. In addition, methane content varied significantly, and very few data were available for digestate composition or for energy consumption and recovery. For composting, accurate estimates relating to the degradation of sewage sludge could not be made, since organic bulking materials were part of the final composted product. Data on emissions to air are currently scarce, which points to the need for more published information. The inventory data evaluated herein are useful in the feasibility assessment of the biological treatment of sewage sludge, for comparing technologies, for example in LCA studies and as a basis for evaluating the performance of a specific biological sludge treatment plant. However, a great deal of the reviewed data originated from laboratory and pilot-scale studies, and so there is a need for more complete datasets on the performance of full-scale technologies, in order to establish full inventories and identify differences in technologies and operational conditions.
Collapse
Affiliation(s)
- Huimin Chang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiang Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Anders Damgaard
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Thomas H Christensen
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
3
|
Tang M, Wu Z, Li W, Shoaib M, Aqib AI, Shang R, Yang Z, Pu W. Effects of different composting methods on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial diversity in dairy cattle manures. J Dairy Sci 2022; 106:257-273. [DOI: 10.3168/jds.2022-22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022]
|
4
|
Fu T, Shangguan H, Wu J, Tang J, Yuan H, Zhou S. Insight into the synergistic effects of conductive biochar for accelerating maturation during electric field-assisted aerobic composting. BIORESOURCE TECHNOLOGY 2021; 337:125359. [PMID: 34126360 DOI: 10.1016/j.biortech.2021.125359] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Electric field-assisted aerobic composting (EAC) has been considered as a novel and effective process for enhancing compost maturation. However, the poor conductivity of compost piles affects the efficiency and applicability of EAC. Thus, this study aims to examine how conductive biochar affects compost maturation in biochar-added electric field-assisted aerobic composting (b-EAC). Our results demonstrated that the germination index and humus index significantly increased, and the compost maturation time was shortened by nearly 25% during b-EAC compared to EAC. The total oxygen utilization rate and total relative abundance of electroactive bacteria during b-EAC increased by approximately two and three times those in EAC, respectively. These findings indicated that the addition of conductive biochar has a synergistic effect which facilitated oxygen utilization by reducing resistance and accelerating electron transfer. Therefore, the addition of conductive biochar is proved to be an effective and applicable strategy for optimizing the efficiency of EAC.
Collapse
Affiliation(s)
- Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Haijing Yuan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Li Y, Song J, Liu T, Lv J, Jiang J. Influence of reusable polypropylene packing on ammonia and greenhouse gas emissions during sewage sludge composting-a lab-scale investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40653-40664. [PMID: 32827119 DOI: 10.1007/s11356-020-10469-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Bulking agents are particularly important for sewage sludge composting. In this study, reusable polypropylene packing (RPP) was mixed with sawdust to improve composting. The effect of the mix ratio of sawdust and RPP on the physicochemical characteristics, nitrogen transformation, and emissions of greenhouse gas (GHG) as well as differences in the germination index values was detected in a lab-scale composting experiment. The results showed that the unique use of RPP as a bulking agent increased the moisture content over 70%, which resulted in poorer porosity and a less efficient O2 utilization environment and thus suppressed the degradation of organic matter. The highest CH4 9275.8 mg and lowest CO2 202.6 g emissions were detected after 25 days of composting in the treatment with RPP used as a bulking agent. When the mixing ratio of sawdust and RPP was 1:1, the temperature, oxygen supply, and dissolved organic carbon degradation were improved. The NH3, N2O, and CH4 emissions were reduced by 32.2, 18.3, and 90.7% compared with a treatment with RPP as a unique bulking agent. The RPP had no effect on conserving nitrogen during sludge composting; the total nitrogen loss was reduced from 29.3 to 18.2% when sawdust was mixed with RPP in a ratio of 1:1. Therefore, mixing RPP and sawdust in the dry weight ratio of 1:1 (sawdust: RPP) can be potentially used for reducing composting cost and improving the sewage sludge composting by reducing the amount of sawdust mixed and mitigating GHG and NH3 emissions.
Collapse
Affiliation(s)
- Yunbei Li
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China.
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China.
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, China.
| | - Junli Song
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China
| | - Tingting Liu
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China
| | - Jinghua Lv
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, China
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China.
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China.
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, China.
| |
Collapse
|
6
|
Bohacz J. Changes in mineral forms of nitrogen and sulfur and enzymatic activities during composting of lignocellulosic waste and chicken feathers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10333-10342. [PMID: 30761493 PMCID: PMC6469611 DOI: 10.1007/s11356-019-04453-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/03/2019] [Indexed: 05/07/2023]
Abstract
The aim of this study was to show the dynamics of changes in the activity of enzymes responsible for C, N, and S metabolism, i.e., cellulase, protease, urease, and arylsulfatase in two lignocellulosic composts as well as changes in the concentration of mineral forms important in plant nutrition (N-NH4+, N-NO3-, S-SO42-). Most of the enzyme activity was higher during 10 weeks of composting in compost I, containing higher amounts of easily available organic matter than in compost II. Enzymatic activities in compost II remained at a higher level for a longer time, but they increased at a slower rate. Mineral content changes in the compost mass consisted primarily of an increase in N-NO3- concentration and a decrease in N-NH4+ and S-SO42- levels, especially in compost I. The concentration of mineral nitrogen and sulfur forms in compost water extracts was about 10-100 times lower than in the compost mass. At the end of composting, the amount of sulfates in the compost mass was 30 and 150 mg kg-1 dw in compost II and I, respectively. In this context, the composts obtained should be considered valuable for fertilizing soils poor in this component and for cultivating plants with high sulfate S demand.
Collapse
Affiliation(s)
- Justyna Bohacz
- Faculty of Agrobioengineering, Department of Environmental Microbiology, Laboratory of Mycology, University of Life Sciences in Lublin, 7 Leszczyńskiego Street, 20-069, Lublin, Poland.
| |
Collapse
|