1
|
Lobato MR, Cazarolli JC, Rios RDF, D' Alessandro EB, Lutterbach MTS, Filho NRA, Pasa VMD, Aranda D, Scorza PR, Bento FM. Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage. Braz J Microbiol 2023; 54:1603-1621. [PMID: 37584891 PMCID: PMC10484884 DOI: 10.1007/s42770-023-01055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
Biofuels are expected to play a major role in reducing carbon emissions in the aviation sector globally. Farnesane ("2,6,10-trimethyldodecane") is a biofuel derived from the synthesized iso-paraffin route wich can be blended with jet fuel; however, the microbial behavior in farnesane/jet fuel blends remains unknown. The chemical and biological stability of blends should be investigated to ensure they meet the quality requirements for aviation fuels. This work aimed at evaluating the behavior of two fungi Hormoconis resinae (F089) and Exophiala phaeomuriformis (UFRGS Q4.2) in jet fuel, farnesane, and in 10% farnesane blend during simulated storage. Microcosms (150-mL flasks) were assembled with and without fungi containing Bushnell & Haas mineral medium for 28 days at a temperature of 20±2°C. The fungal growth (biomass), pH, surface tension, and changes in the fuel's hydrocarbon chains were evaluated. This study revealed thatthe treatment containing H. resinae showed a biomass of 19 mg, 12 mg, and 2 mg for jet fuel, blend, and farnesane respectively. The pH was reduced from 7.2 to 4.3 observed in jet fuel treatment The degradation results showed that compounds with carbon chains between C9 and C11, in jet fuel, and blend treatments were preferably degraded. The highest biomass (70.9 mg) produced by E. phaeomuriformis was in 10% farnesane blend, after 21 days. However, no significant decrease was observed on pH and surface tension measurements across the treatments as well as on the hydrocarbons when compared to the controls. This study revealed that farnesane neither inhibited nor promoted greater growth on both microorganisms.
Collapse
Affiliation(s)
- Mariane Rodrigues Lobato
- Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Ramiro Barcelos Street # 2600, Building, Porto Alegre, Rio Grande do Sul, 21116, Brazil
| | - Juciana Clarice Cazarolli
- Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Ramiro Barcelos Street # 2600, Building, Porto Alegre, Rio Grande do Sul, 21116, Brazil
| | - Regiane Débora Fernandes Rios
- Fuel Testing Laboratory (LEC), Department of Chemistry, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue #6627, Belo Horizonte, Minas Gerais, Brazil
| | - Emmanuel Bezerra D' Alessandro
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goias, Esperança Avenue, IQ-1 Block, Goiânia, Goiás, Goiânia, Brasil
| | - Marcia T S Lutterbach
- Laboratory of Biocorrosion and Biodegradation (LABIO), National Institute of Technology (INT), Venezuela Avenue # 82, Rio de Janeiro, Brazil
| | - Nelson Roberto Antoniosi Filho
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goias, Esperança Avenue, IQ-1 Block, Goiânia, Goiás, Goiânia, Brasil
| | - Vânya Márcia Duarte Pasa
- Fuel Testing Laboratory (LEC), Department of Chemistry, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue #6627, Belo Horizonte, Minas Gerais, Brazil
| | - Donato Aranda
- GREENTEC- School of Chemistry, Department of Chemical Engineering, Horácio Macedo, Federal University of Rio de Janeiro, Avenue # 2030. Block E, office 211, Rio de Janeiro, Brazil
| | - Pedro Rodrigo Scorza
- Brazilian Union of Biodiesel and Biojetfuel UBRABIO-SHIS QL12, Conjunto 07, Casa 05, Brasilia, Brasilia, Brazil
| | - Fátima Menezes Bento
- Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Ramiro Barcelos Street # 2600, Building, Porto Alegre, Rio Grande do Sul, 21116, Brazil.
| |
Collapse
|
2
|
Mello TP, Barcellos IC, Aor AC, Branquinha MH, Santos ALS. Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. J Fungi (Basel) 2022; 8:1172. [PMID: 36354939 PMCID: PMC9693033 DOI: 10.3390/jof8111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
3
|
Komariah LN, Arita S, Rendana M, Ramayanti C, Suriani NL, Erisna D. Microbial contamination of diesel-biodiesel blends in storage tank; an analysis of colony morphology. Heliyon 2022; 8:e09264. [PMID: 35464710 PMCID: PMC9018388 DOI: 10.1016/j.heliyon.2022.e09264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022] Open
Abstract
Fuel contamination is a major issue that comes with the utilization of biodiesel. Microbial growth is one of the primary causes of contamination during fuel handling and storage. This work attempts to identify the types, shapes, and growth profiles of microorganisms on fuel samples. The morphology of microbial colonies is presented in order to analyze the potential of fuel contamination. The diesel, biodiesel, and blends are stored in stainless steel (SS) and glass tanks, where each is placed indoors and outdoors during the 90 days of storage time. The morphology of microbial colonies is observed through a microscope with a magnification of 1000× and the quantity is calculated by a digital colony counter. Microbial contamination in all samples is considered as high contamination where the Colony Forming Unit (CFU) is greater than 105 L−1. Colony forms are far more assorted in blends than in pure diesel (B0) and neat biodiesel (B100). The transformation of microbial colonies accelerates after 60 days of storage time. The results reveal that the number of bacterial colonies that grow in B20 is higher and more varied, nevertheless, the contamination in B100 is significantly higher. This is indicated by a 1.5-fold rise in B20 acidity and a 2.5-fold increase in water content compared to the initial condition.
Collapse
Affiliation(s)
- Leily Nurul Komariah
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
- Corresponding author.
| | - Susila Arita
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Muhammad Rendana
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Cindi Ramayanti
- Chemical Engineering, Department State Polytechnic of Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Ni Luh Suriani
- Biology Study Program, Faculty of Mathematics, and Natural Sciences, Udayana University, Denpasar, Bali, 80232, Indonesia
| | - Desi Erisna
- Energy Engineering Laboratory Universitas Sriwijaya, Indralaya, South Sumatera, 30662, Indonesia
| |
Collapse
|
4
|
Lu L, Dong D, Yeung M, Sun Z, Xi J. Sustaining low pressure drop and homogeneous flow by adopting a fluidized bed biofilter treating gaseous toluene. CHEMOSPHERE 2022; 291:132951. [PMID: 34826444 DOI: 10.1016/j.chemosphere.2021.132951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
A biofilter treating gaseous VOCs is usually a packed bed system which will encounter bed clogging problems with increased pressure drop and uneven gas flow in the filter bed. In this study, a lab-scale fluidized bed reactor (FBR) was set up treating gaseous toluene and compared with a packed bed reactor (PBR) with the same bed height of 150 cm. During 45 days of operation, the average elimination capacity of the FBR was 242 g m-3∙h-1, similar to that in the PBR (228 g m-3∙h-1) under an inlet toluene concentration of 100-300 mg m-3 and an empty bed residence time (EBRT) of 0.60 s. A better mass transfer was also confirmed in the FBR by molecular residence time distribution measurement. The pressure drop of the PBR increased dramatically and exceeded 8000 Pa m-1 while that of the FBR maintained approximately 200 Pa m-1. On the 40th day, the air flow distribution in the FBR was more homogeneous than that in the PBR. The differences in pressure drop and air flow distribution were due to a much lower and more uniform distribution of biomass in the FBR than that in the PBR. The detached biomass collected from the off-gas of the FBR was almost 13 times of that from the PBR. Similar microbial community structures were observed in both systems, with the dominant bacterial genus Stenotrophomonas and the fungal genera Meyerozyma, Aspergillus. The results in this study demonstrated that the FBR could achieve a more stable performance than a PBR in long-term operation.
Collapse
Affiliation(s)
- Lichao Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dong Dong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Marvin Yeung
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuqiu Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study. J Microbiol 2021; 59:634-643. [PMID: 33990911 DOI: 10.1007/s12275-021-0395-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Soil contamination with diesel oil is quite common during processes of transport and storage. Bioremediation is considered a safe, economical, and environmentally friendly approach for contaminated soil treatment. In this context, studies using hydrocarbon bioremediation have focused on total petroleum hydrocarbon (TPH) analysis to assess process effectiveness, while ecotoxicity has been neglected. Thus, this study aimed to select a microbial consortium capable of detoxifying diesel oil and apply this consortium to the bioremediation of soil contaminated with this environmental pollutant through different bioremediation approaches. Gas chromatography (GC-FID) was used to analyze diesel oil degradation, while ecotoxicological bioassays with the bioindicators Artemia sp., Aliivibrio fischeri (Microtox), and Cucumis sativus were used to assess detoxification. After 90 days of bioremediation, we found that the biostimulation and biostimulation/bioaugmentation approaches showed higher rates of diesel oil degradation in relation to natural attenuation (41.9 and 26.7%, respectively). Phytotoxicity increased in the biostimulation and biostimulation/bioaugmentation treatments during the degradation process, whereas in the Microtox test, the toxicity was the same in these treatments as that in the natural attenuation treatment. In both the phytotoxicity and Microtox tests, bioaugmentation treatment showed lower toxicity. However, compared with natural attenuation, this approach did not show satisfactory hydrocarbon degradation. Based on the microcosm experiments results, we conclude that a broader analysis of the success of bioremediation requires the performance of toxicity bioassays.
Collapse
|
6
|
Ribas R, Cazarolli JC, da Silva EC, Meneghetti MR, Meneghetti SMP, Bento FM. Characterization of antimicrobial effect of organotin-based catalysts on diesel-biodiesel deteriogenic microorganisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:802. [PMID: 33263150 DOI: 10.1007/s10661-020-08744-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Organotin compounds are applied in several industrial reactions and can present antifungal and antibacterial activities. Incorrect handling and storage practices of biodiesel and diesel-biodiesel blends can lead to microbial development, impacting its final quality. Concerning this problem, this work investigated the antimicrobial action of two organotin catalysts used in biodiesel production with four isolated microroorganisms (Bacillus pumilus, Pseudomonas aeruginosa, Pseudallescheria boydii, and Aureobasidium pullulans) and a pool of microorganisms (ASTM E1259 standard practice). Samples of soybean biodiesel with different concentrations of dibutyl tin dilaurate (catalyst 1) and di-n-butyl-oxo-stannane (catalyst 2) were prepared and added of mineral medium. The pool of microorganisms was inoculated and incubated at 30 °C and final biomass was weighted after 14 days. Thereafter, soybean biodiesel with catalyst 2 was used. Fungal biomass was weighted, and plate count was used to assess bacterial growth. Results show that catalysts 1 and 2 presented no inhibitory activity on the pool of microorganisms evaluated. A slight inhibitory activity was observed for B. pumilus and A. pullulans growth, but not for P. boydii, P. aeruginosa, or the pool of microorganisms. All experiment exhibited acidification higher than sterile control. Infrared analysis show less microbiological degradation products in the tin-protected fuel with ASTM inoculum. These results suggest that these tin-based catalysts show no toxic effect on native microbial population and a slight effect on some isolated microbial population in laboratory scale and for the first time shows that these organotin compounds can be employed safely as biodiesel catalyst. Graphical abstract.
Collapse
Affiliation(s)
- Rodolfo Ribas
- Department of Microbiology, Immunology and Parasitology, Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Federal University of Rio Grande do Sul, Sarmento Leite Street 500, Porto Alegre, RS, 90050-170, Brazil.
| | - Juciana Clarice Cazarolli
- Department of Microbiology, Immunology and Parasitology, Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Federal University of Rio Grande do Sul, Sarmento Leite Street 500, Porto Alegre, RS, 90050-170, Brazil
| | - Eid Cavalcante da Silva
- Technology Center (CTEC), Federal University of Alagoas, Av. Lourival de Melo Mota, s/n°, Maceió, AL, 57072-970, Brazil
| | - Mario Roberto Meneghetti
- Institute of Chemistry and Biotechnology, Group of Catalysis and Chemical Reactivity (GCAR), Federal University of Alagoas, Av. Lourival de Melo Mota, s/n°, Maceió, AL, 57072-970, Brazil
| | - Simoni Margareti Plentz Meneghetti
- Institute of Chemistry and Biotechnology, Group of Catalysis and Chemical Reactivity (GCAR), Federal University of Alagoas, Av. Lourival de Melo Mota, s/n°, Maceió, AL, 57072-970, Brazil
| | - Fatima Menezes Bento
- Department of Microbiology, Immunology and Parasitology, Fuels and Biofuels Biodeterioration Laboratory (LAB-BIO), Federal University of Rio Grande do Sul, Sarmento Leite Street 500, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
7
|
Correa C, Konzen PHA, Carvalho ÂR, Giovanella P, Bento FM, Ferrão MF. Use of digital images to count colonies of biodiesel deteriogenic microorganisms. J Microbiol Methods 2020; 178:106063. [PMID: 32956723 DOI: 10.1016/j.mimet.2020.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022]
Abstract
This work presents a novel, robust procedure for the semi-automated counting of colony-forming units of Bacillus pumilus (a bacterium) and Meyerozyma guilliermondii (a yeast) both isolated from diesel oil. The counting is performed from digital images of Petri dishes containing the samples by a developed Python code, and the images are acquired from a low-cost scanning apparatus. The counting algorithm is based on the similar morphological characteristics of the bacterium and the yeast colonies. It was compared with classical counting methodology, and the results showed calibration and validation curves with a coefficient of determination (R2) of 0.99 and 0.98, respectively. The developed methodology is a valuable alternative to estimate the microbial contamination of biofuels.
Collapse
Affiliation(s)
- Camila Correa
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS CEP 91501-970, Brazil.
| | - Pedro Henrique A Konzen
- Universidade Federal do Rio Grande do Sul, Instituto de Matemática e Estatística, Porto Alegre, RS CEP 91501-970, Brazil
| | - Ânderson R Carvalho
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Porto Alegre, RS CEP 90610-000, Brazil
| | - Patrícia Giovanella
- Universidade Federal do Rio Grande do Sul, Laboratório de Biodeterioração de Combustíveis e Biocombustíveis, Porto Alegre, RS CEP 90040-060, Brazil
| | - Fátima Menezes Bento
- Universidade Federal do Rio Grande do Sul, Laboratório de Biodeterioração de Combustíveis e Biocombustíveis, Porto Alegre, RS CEP 90040-060, Brazil
| | - Marco Flores Ferrão
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS CEP 91501-970, Brazil; Instituto Nacional de Ciência e Tecnologia-Bioanalítca (INCT Bioanalítica), Cidade Universitária, Zeferino Vaz s/n, Campinas, SP CEP: 13083-970, Brazil
| |
Collapse
|
8
|
Miller RB, Sadek A, Crouch AL, Floyd JG, Drake CA, Stevenson BS, Crookes-Goodson W, Monty CN, Senko JM. Novel Mechanism of Microbially Induced Carbon Steel Corrosion at an Aqueous/Non-aqueous Interface. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert B. Miller
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
- Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Anwar Sadek
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Audra L. Crouch
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, Ohio 45433, United States
- UES, Inc., Beavercreek, Ohio 45432, United States
| | - James G. Floyd
- Department of Microbial and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Carrie A. Drake
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, Ohio 45433, United States
- UES, Inc., Beavercreek, Ohio 45432, United States
| | - Bradley S. Stevenson
- Department of Microbial and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Wendy Crookes-Goodson
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, Ohio 45433, United States
| | - Chelsea N. Monty
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - John M. Senko
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
- Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
- Department of Geosciences, The University of Akron, Akron Ohio 44325, United States
| |
Collapse
|
9
|
Lu L, Dong D, Baig ZT, Yeung M, Xi J. Development of a novel fungal fluidized-bed reactor for gaseous ethanol removal. CHEMOSPHERE 2020; 244:125529. [PMID: 32050333 DOI: 10.1016/j.chemosphere.2019.125529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/30/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Fluidized bed bioreactors can overcome the limitations of packed bed bioreactors such as clogging, which has been observed in the industrial application for decades. The key to establish a gaseous fluidized bed bioreactor for treatment of volatile organic compounds is to achieve microbial growth on a light packing material. In this study, Two fungal species and two bacterial species were isolated to build a fungal fluidized-bed reactor (FFBR). A light packing material with wheat bran coated on expended polystyrene was used. The FFBR was operated for 65 days for gaseous ethanol removal and obtained elimination capacities of 500-1800 g∙m-3∙h-1 and removal efficiencies of 20-50%. The pressure drops was well controlled with values around 400 Pa∙m-1. Stress tolerant genera including Aureobasidium, Stenotrophomonas and Brevundimonas were dominant. Meyerozyma, whose species were present in an initial inoculated isolate, was detected among the dominant species with 28.70% relative abundance; they were reported to degrade complicated compounds under similarly stressful environments.
Collapse
Affiliation(s)
- Lichao Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dong Dong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zenab Tariq Baig
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Marvin Yeung
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
10
|
Knob A, Izidoro SC, Lacerda LT, Rodrigues A, de Lima VA. A novel lipolytic yeast Meyerozyma guilliermondii: Efficient and low-cost production of acid and promising feed lipase using cheese whey. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|