1
|
van Tol Amaral Guerra SM, Cordeiro Koppe de França L, Neto da Silva K, Scolari Grotto F, Glaser V. Copper dyshomeostasis and its relationship to AMPK activation, mitochondrial dynamics, and biogenesis of mitochondria: A systematic review of in vivo studies. J Trace Elem Med Biol 2024; 86:127549. [PMID: 39427561 DOI: 10.1016/j.jtemb.2024.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Copper dyshomeostasis can be related to an increase in copper levels, resulting in toxicity, or to a decrease in tissues levels, impairing cuproenzyme activities. Inside cells, copper can be found in the cytoplasm and inside organelles, and the main organelle that compartmentalizes copper is the mitochondrion. This organelle can form networks and may fuse or fission from this, determining the mitochondrial fusion and fission processes, respectively. Together with mitophagy (autophagy of mitochondria) and mitochondrial biogenesis, mitochondrial fusion and fission (denominated mitochondrial dynamics) determine the number of mitochondria in a cell. A master regulator of mitochondrial dynamics and biogenesis of new mitochondria is AMPK. Considering that both a decrease and an increase in copper levels can influence mitochondrial turnover, especially in diseases related to copper dyshomeostasis, the objective of this systematic review was to verify the current knowledge on the influence of copper homeostasis on AMPK activation, mitochondrial dynamics, and biogenesis of new mitochondria in vivo. METHODS PubMed (MEDLINE), Embase, and Web of Science databases were used to search for articles in the literature. Data about the effects of a decrease or an increase in copper levels on the expression of proteins involved in mitochondrial dynamics or biogenesis, and data about AMPK and p-AMPK levels were extracted. RESULTS Meta-analysis has demonstrated that high copper levels increase mitochondrial fission and inhibit mitochondrial fusion. Additionally, an increase in copper levels results in AMPK activation. Few studies have analyzed the effects of high copper levels on proteins related to mitochondrial biogenesis, as well as the impact of a decrease in this metal on mitochondrial dynamics and biogenesis, and on AMPK activation. CONCLUSIONS Despite the results gathered in this review, other studies are necessary to completely understand the role of copper in regulating AMPK activation, mitochondrial dynamics, and the biogenesis of new mitochondria, since the cell response to a copper dyshomeostasis could be different depending on the species and tissues analyzed.
Collapse
Affiliation(s)
| | | | - Katriane Neto da Silva
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Fabielly Scolari Grotto
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Viviane Glaser
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil.
| |
Collapse
|
2
|
Elkribi-Boukhris S, Boughattas I, Sappin-Didier V, Helaoui S, Coriou C, Bussiere S, Mokni M, Banni M. Exposure to polymetallic contaminated sites induced toxicological effects on chicken lungs: A multi-level analysis. CHEMOSPHERE 2024; 354:141574. [PMID: 38460845 DOI: 10.1016/j.chemosphere.2024.141574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Heavy metal pollution is an important environmental issue causing several hazards to organisms. In the present study, we investigated the uptake and accumulation of heavy metals (Pb, Cd, Cu, and Zn) in chicken lungs after six months of breeding on polymetallic-contaminated area in Jebel Ressas village. Genotoxicity in term of micronuclei frequency as well as oxidative stress in term of enzymatic activities of Catalase (CAT), Glutathion-S-Transferase (GST) and malondialdehydes accumulation (MDA) were performed. In addition, gene expression levels involved in oxidative stress genes (cat, sod and gst), metal homeostasis (mt1 and mt4) and DNA metabolism (p53, bcl2, caspase 3 and DNA ligase) were detected. Exposed chicken lungs revealed an important heavy metal accumulation of Cd and Zn co-occurring with oxidative status modulation. Transcriptomic results unveiled an upregulation of oxidative stress and homeostasis genes. On the other hand, genes involved in DNA metabolism indicated cellular functioning towards cells death and apoptosis modulation. Moreover, the histopathological examination revealed lung lesions in the chickens exposed to heavy metal contamination. Our study highlights the hazardous effects of heavy metal pollution on chicken respiratory system.
Collapse
Affiliation(s)
- Sameh Elkribi-Boukhris
- Department of Biological Sciences, University of Tunis El Manar, Tunis, Tunisia; Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Mariem, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Mariem, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia.
| | | | - Sondes Helaoui
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Mariem, Tunisia
| | - Cécile Coriou
- UMR ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave D'Ornon, France
| | - Sylvie Bussiere
- UMR ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave D'Ornon, France
| | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Mariem, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| |
Collapse
|
3
|
Habotta OA, Wang X, Othman H, Aljali AA, Gewaily M, Dawood M, Khafaga A, Zaineldin AI, Singla RK, Shen B, Ghamry HI, Elhussieny E, El-Mleeh A, Ibrahim SF, Abdeen A. Selenium-enriched yeast modulates the metal bioaccumulation, oxidant status, and inflammation in copper-stressed broiler chickens. Front Pharmacol 2022; 13:1026199. [PMID: 36313334 PMCID: PMC9614105 DOI: 10.3389/fphar.2022.1026199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Copper (Cu) could be seriously hazardous when present at excessive levels, despite its vital contribution to various cellular processes. Selenium-enriched yeast (SeY) was reported to improve the health and metabolic status in broiler chicken. Hence, our study was endeavored to illustrate the mitigating efficacy of SeY on Cu-induced hepatic and renal damage. Cobb chicks aged 1 day were allocated into four experimental groups and offered a basal diet, SeY (0.5 mg/kg), CuSO4 (300 mg/kg), or SeY plus CuSO4 in their diets for 42 days. Our results revealed that SeY supplement antagonized significantly the Cu accumulation in livers and kidneys of exposed birds. Marked declines were also detected in the AST, ALT, urea, and creatinine levels, besides marked increases in total protein, glycerides, and cholesterol in the SeY-supplemented group. Moreover, enhancement of cellular antioxidant biomarkers (superoxide dismutase, CAT, GPx, and GSH) along with lowered MDA contents were achieved by SeY in hepatic and renal tissues. Further, SeY exerted a noteworthy anti-inflammatory action as indicated by decreased inflammatory biomarkers (IL-1β and TNF-α) and NO levels in both organs. Noticeable histopathological alterations of both organs further validated the changes in the markers mentioned above. To sum up, our findings indicate that SeY can be considered a potential feed supplement for alleviating Cu-induced hepatic and renal damage in broilers, possibly via activation of antioxidant molecules and lessening the inflammatory stress.
Collapse
Affiliation(s)
- Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Ola A. Habotta, ; Ahmed Abdeen,
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hamzah Othman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Abdulrahman A. Aljali
- Department of Pharmacology, Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Mahmoud Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- The Centre for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, Egypt
| | - Asmaa Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Amr I. Zaineldin
- Animal Health Research Institute (AHRI-DOKI), Agriculture Research Center, Kafrelsheikh, Egypt
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, Abha, Saudi Arabia
| | - Eman Elhussieny
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Amany El-Mleeh
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum, Egypt
| | - Samah F. Ibrahim
- Clinical Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
- Center of Excellence in Screening Environmental Contaminants (CESEC), Benha University, Toukh, Egypt
- *Correspondence: Ola A. Habotta, ; Ahmed Abdeen,
| |
Collapse
|
4
|
Ma F, Huo Y, Li H, Yang F, Liao J, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. New insights into the interaction between duodenal toxicity and microbiota disorder under copper exposure in chicken: Involving in endoplasmic reticulum stress and mitochondrial toxicity. Chem Biol Interact 2022; 366:110132. [PMID: 36030842 DOI: 10.1016/j.cbi.2022.110132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
Copper (Cu) has been widely used in industrial agricultural production, but excess use can lead to toxic effect on host physiology, which poses a threaten to public hygiene. However, the relationship between gut microbiota and Cu-induced intestinal toxicity is unclear. Here, we identified that intestinal flora disturbance was related to duodenal toxicity under Cu exposure. We found that excess Cu disturbed gut microbiota homeostasis, resulting in Cu accumulation and intestinal damage. In addition, Cu considerably increased intestinal permeability by reducing expression of tight junction proteins (Claudlin-1, Occludin, and ZO-1). Meanwhile, Cu could induce endoplasmic reticulum stress, mitophagy, and mitochondria-mediated apoptosis in the duodenum, with the evidence by the elevated levels of GRP78, GRP94, LC3Ⅱ/LC3Ⅰ and Caspase-3 protein expression. Correlation analysis showed that Melainabacteria was closely related to tight junction proteins and endoplasmic reticulum stress of duodenum, indicating that disturbance of intestinal flora may aggravate the toxic effect of Cu. Therefore, our results suggest that the destruction of intestinal flora induced by excessive Cu may further lead to intestinal barrier damage, ultimately leading to endoplasmic reticulum stress, mitophagy and apoptosis. This research provides a new insight into interpretation of the interrelationship between microbiota disorder and duodenal toxicity under Cu exposure.
Collapse
Affiliation(s)
- Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Huayu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Lu H, Zhao H, Wang Y, Guo M, Mu M, Liu Y, Nie X, Huang P, Xing M. Arsenic (III) induces oxidative stress and inflammation in the gills of common carp, which is ameliorated by zinc (II). J Inorg Biochem 2021; 225:111617. [PMID: 34571403 DOI: 10.1016/j.jinorgbio.2021.111617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Arsenic (As) is widely present in the environment in form of arsenite (AsIII) and arsenate (AsV). Oxidative stress and inflammation are believed to be the dominant mechanisms of AsIII toxicity in vivo and in vitro. The aim of this study was to investigate whether zinc (Zn2+) alleviates exogenous gill toxicity in carp induced by AsIII and to gain insight into the underlying mechanisms. Exposure of carp to 2.83 mg As2O3/L for 30 days reduced superoxide dismutase activity by 4.0%, catalase by 41.0% and glutathione by 19.8%, while the concentration of malondialdehyde was increased by 16.4% compared to the control group, indicating oxidative stress. After the exposure of carp to AsIII the expression of inflammatory markers, such as interleukin-6, interleukin-8, tumor necrosis factor α and inducible nitric oxide synthase in gill tissue were significantly increased. In addition, the phosphorylation of nuclear factor kappa-B (NF-κB) was increased by 225%. 1 mg ZnCl2/L can relieve the toxicity of AsIII based on histopathology, antioxidase activity, qRT-PCR and western results. Zn2+ attenuated AsIII-induced gill toxicity that suppressed intracellular oxidative stress and NF-κB pathway by an upregulation of metallothionein. Therefore, the toxic effect of AsIII on the gill cells of carp was reduced. This study provides a theoretical basis for exploring the alleviation of the toxic effects of metalloids on organisms by heavy metals and the biological assessment of the effects.
Collapse
Affiliation(s)
- Hongmin Lu
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiaopan Nie
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Puyi Huang
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
6
|
Huang C, Shi Y, Zhou C, Guo L, Liu G, Zhuang Y, Li G, Hu G, Liu P, Guo X. Effects of Subchronic Copper Poisoning on Cecal Histology and Its Microflora in Chickens. Front Microbiol 2021; 12:739577. [PMID: 34566941 PMCID: PMC8456085 DOI: 10.3389/fmicb.2021.739577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Copper (Cu) is an important trace element with a two-sided effect on the growth performance of animals, which depends on the timing and dosage of Cu addition, etc. The purpose of this study was to determine the effects of oral copper sulfate (CuSO4, 350 ppm) on growth performance, cecal morphology, and its microflora of chickens (n = 60) after 30, 60, and 90 days. The results showed that after 90 days of copper exposure, the chickens lost weight, the cecum mucosa was detached, and vacuolation and inflammatory infiltration occurred at the base of the lamina propria. In addition, using the 16S rDNA sequencing method, we observed that copper exposure changed the richness and diversity of intestinal microorganisms. At the phylum level, Proteobacteria and Actinobacteria both significantly increased, while Bacteroidetes significantly decreased in the Cu group compared with control check (CK) group. At the genus level, the relative abundance of Rikenellaceae_RC9_gut_group decreased significantly, while Ruminococcaceae_UCG-014, Lachnoclostridium, and [Eubacterium]_coprostanoligenes_group increased significantly after copper exposure, and the change in microflora was most significant at 90 days. Moreover, the relevance of genus-level bacteria was altered. PICRUST analysis revealed potential metabolic changes associated with copper exposure, such as Staphylococcus aureus infection and metabolic disorders of nutrients. To sum up, these data show that subchronic copper exposure not only affects the growth and development of chickens but also causes the imbalance of intestinal microflora, which may further induce metabolic disorders in chickens.
Collapse
Affiliation(s)
- Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lianying Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guohui Liu
- Animal Husbandry and Veterinary Department of Ganzhou, Ganzhou, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
7
|
Saccharomyces cerevisiae Concentrates Subtoxic Copper onto Cell Wall from Solid Media Containing Reducing Sugars as Carbon Source. Bioengineering (Basel) 2021; 8:bioengineering8030036. [PMID: 33800957 PMCID: PMC8000517 DOI: 10.3390/bioengineering8030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Copper is essential for life, but it can be deleterious in concentrations that surpass the physiological limits. Copper pollution is related to widespread human activities, such as viticulture and wine production. To unravel aspects of how organisms cope with copper insults, we used Saccharomyces cerevisiae as a model for adaptation to high but subtoxic concentrations of copper. We found that S. cerevisiae cells could tolerate high copper concentration by forming deposits on the cell wall and that the copper-containing deposits accumulated predominantly when cells were grown statically on media prepared with reducing sugars (glucose, galactose) as sole carbon source, but not on media containing nonreducing carbon sources, such as glycerol or lactate. Exposing cells to copper in liquid media under strong agitation prevented the formation of copper-containing deposits at the cell wall. Disruption of low-affinity copper intake through the plasma membrane increased the potential of the cell to form copper deposits on the cell surface. These results imply that biotechnology problems caused by high copper concentration can be tackled by selecting yeast strains and conditions to allow the removal of excess copper from various contaminated sites in the forms of solid deposits which do not penetrate the cell.
Collapse
|
8
|
Molecular Insights of Copper Sulfate Exposure-Induced Nephrotoxicity: Involvement of Oxidative and Endoplasmic Reticulum Stress Pathways. Biomolecules 2020; 10:biom10071010. [PMID: 32650488 PMCID: PMC7407214 DOI: 10.3390/biom10071010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The precise pathogenic mechanism in Cu exposure-cause nephrotoxicity remains unclear. This study investigated the underlying molecular mechanism of copper sulfate (CuSO4)-induced nephrotoxicity. Mice were treated with CuSO4 at 50, 100, 200 mg/kg/day or co-treated with CuSO4 (200 mg/kg/day) and 4-phenylbutyric acid (4-PBA, 100 mg/kg/day) for 28 consecutive days. HEK293 cells were treated with CuSO4 (400 μM) with or without superoxide dismutase, catalase or 4-PBA for 24 h. Results showed that CuSO4 exposure can cause renal dysfunction and tubular necrosis in the kidney tissues of mice. CuSO4 exposure up-regulated the activities and mRNA expression of caspases-9 and -3 as well as the expression of glucose-regulated protein 78 (GRP78), GRP94, DNA damage-inducible gene 153 (GADD153/CHOP), caspase-12 mRNAs in the kidney tissues. Furthermore, superoxide dismutase and catalase pre-treatments partly inhibited CuSO4-induced cytotoxicity by decreasing reactive oxygen species (ROS) production, activities of caspases-9 and -3 and DNA fragmentations in HEK293 cells. 4-PBA co-treatment significantly improved CuSO4-induced cytotoxicity in HEK293 cells and inhibited CuSO4 exposure-induced renal dysfunction and pathology damage in the kidney tissues. In conclusion, our results reveal that oxidative stress and endoplasmic reticulum stress contribute to CuSO4-induced nephrotoxicity. Our study highlights that targeting endoplasmic reticulum and oxidative stress may offer an approach for Cu overload-caused nephrotoxicity.
Collapse
|
9
|
Jian Z, Guo H, Liu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Oxidative stress, apoptosis and inflammatory responses involved in copper-induced pulmonary toxicity in mice. Aging (Albany NY) 2020; 12:16867-16886. [PMID: 32952128 PMCID: PMC7521514 DOI: 10.18632/aging.103585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
At present, there are few studies focused on the relationship between copper (Cu) and oxidative stress, apoptosis, or inflammatory responses in animal and human lungs. This study was conducted to explore the effects of Cu on pulmonary oxidative stress, apoptosis and inflammatory responses in mice orally administered with 0 mg/kg (control), 10 mg/kg, 20 mg/kg, and 40 mg/kg of CuSO4 for 42 days. The results showed that CuSO4 increased ROS production, and MDA, 8-OHdG and NO contents as well as iNOS activities and mRNA expression levels. Meanwhile, CuSO4 reduced the activities and mRNA expression levels of antioxidant enzymes (GSH-Px, CAT, and SOD) and GSH contents, and ASA and AHR abilities. Also, CuSO4 induced apoptosis, which was accompanied by decreasing Bcl-2, Bcl-xL mRNA expression levels and protein expression levels, and increasing Bax, Bak, cleaved-caspase-3, cleaved-caspase-9 mRNA, and protein expression levels, and Bax/Bcl-2 ratio. Concurrently, CuSO4 caused inflammation by increasing MPO activities and activating the NF-κB signalling pathway, and down-regulating the mRNA and protein expression levels of anti-inflammatory cytokines (IL-2, IL-4, IL-10). In conclusion, the abovementioned findings demonstrated that over 10 mg/kg CuSO4 can cause oxidative stress, apoptosis, and inflammatory responses, which contribute to pulmonary lesions and dysfunction in mice.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China,Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan 625014, Sichuan, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| |
Collapse
|
10
|
Wan F, Zhong G, Ning Z, Liao J, Yu W, Wang C, Han Q, Li Y, Pan J, Tang Z, Huang R, Hu L. Long-term exposure to copper induces autophagy and apoptosis through oxidative stress in rat kidneys. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110158. [PMID: 31918257 DOI: 10.1016/j.ecoenv.2019.110158] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 05/15/2023]
Abstract
Copper (Cu) is an essential trace element for most organisms. However, excessive Cu can be highly toxic. The purpose of this study was to elucidate the mechanism underlying Cu toxicity in the kidneys of rats after treatment with CuCl2 (15 [control], 30, 60, or 120 mg/kg in the diet) for 180 days. Histological and ultrastructural changes, antioxidant enzyme activity, and the mRNA and protein levels of apoptosis and autophagy-related genes were measured. The results showed that Cu exposure led to significant accumulation of copper in kidneys and disorganized kidney morphology. The activities of total anti-oxidation capacity (T-AOC) and superoxide dismutase (SOD) in the kidneys decreased significantly, while the malondialdehyde (MDA) content increased. Furthermore, excessive Cu markedly upregulated the expression of autophagy and apoptosis-related genes (LC3A, LC3B, ATG-5, Beclin-1, Caspase3, CytC, P53, Bax), but downregulated the expression of P62, mTOR and BCL-2. Moreover, the LC3B/LC3A, ATG-5, Beclin-1, P53, Caspase3 proteins were up-regulated while P62 was down-regulated in the kidney tissues of the treatment groups. Overall, these findings provide strong evidence that excess Cu can trigger autophagy and apoptosis via the mitochondrial pathway by inducing oxidative stress in rat kidneys.
Collapse
Affiliation(s)
- Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhijun Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Congcong Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Guo M, Wang Y, Zhao H, Mu M, Yang X, Fei D, Liu Y, Zong H, Xing M. Oxidative damage under As 3+ and/or Cu 2+ stress leads to apoptosis and autophagy and may be cross-talking with mitochondrial disorders in bursa of Fabricius. J Inorg Biochem 2020; 205:110989. [PMID: 31945648 DOI: 10.1016/j.jinorgbio.2019.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022]
Abstract
Arsenic (As) exists in many forms in the whole natural environment, with As3+ the highest toxicity. Herein our study demonstrated that arsenic trioxide (As2O3) at a dose of 30 mg/kg caused serious oxidative damage to chickens' bursa of Fabricius (BF) in a time-dependent manner. Copper (Cu) is a necessary micronutrient and a key catalytic cofactor of many enzymes. We found excessive Cu (in the form of 300 mg/kg copper sulfate (CuSO4)) also induced severe oxidative stress (OxS), and its co-exposure with As3+ had a greater destructive power against oxidative system. Under electron microscope, swollen mitochondria, disappeared cristae and agglutinated chromatin were observed, accompanied by myeloid structure and autophagosome. The results showed apoptosis and autophagy occurred under the action of As3+ and Cu2+, and the situation was more serious in combined exposure group, which was further explained by terminal deoxynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'-Triphosphate (dUTP) Nick-End Labeling (TUNEL). By quantitative real time polymerase chain reaction (RT-qPCR) and western blot, we found that mitochondrial dynamics were disordered under OxS, and the abnormal changes of B-cell lymphoma (Bcl)-2, p53, Bcl-2-interacting protein (Beclin)-1 and autophagy-related gene (ATG) 4B indicated the crosstalk between apoptosis and autophagy. In conclusion, apoptosis and autophagy of BF induced by As3+ and Cu2+ and mitochondrial disorder are closely related to the collapse of antioxidant system, and their connections are inseparable. Our results provide a reference for environmental risk prevention and selection of poultry feed additives and pesticides to avoid the health risks caused by As3+ and Cu2+ exposure.
Collapse
Affiliation(s)
- Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou 510000, Guangdong, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
12
|
Zhao G, Zhang T, Sun H, Liu JX. Copper nanoparticles induce zebrafish intestinal defects via endoplasmic reticulum and oxidative stress. Metallomics 2020; 12:12-22. [DOI: 10.1039/c9mt00210c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both CuNPs and their released Cu2+ induced intestinal developmental defects in zebrafish in a dosage-dependent manner via inducing ROS and ER stresses, and partially blocking copper traffic to mitochondria (cox17−/−) or to TGN (atp7a−/−) could not alleviate the defects.
Collapse
Affiliation(s)
- Guang Zhao
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - Ting Zhang
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - HaoJie Sun
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - Jing-Xia Liu
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| |
Collapse
|
13
|
Guo M, Zhao H, Wang Y, Liu J, Fei D, Yang X, Mu M, Xing M. Elemental imbalance elicited by arsenic and copper exposures leads to oxidative stress and immunotoxicity in chicken gizzard, activating the protective effects of heat shock proteins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36343-36353. [PMID: 31713821 DOI: 10.1007/s11356-019-06702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) and copper (Cu) are ubiquitous pollutants that pose a threat to the environment. Our aim is to study the underlying mechanisms by which As and Cu act on the chicken gizzard. In order to detect ionic disorders in chicken gizzard under chronic treatment with As3+ and/or Cu2+ and whether they can induce oxidative damage as well as immune disorders, 30 mg/kg arsenic trioxide (As2O3) and/or 300 mg/kg copper sulfate (CuSO4) were added to the chicken's basal diet. After 12 weeks of exposure, trace elements were found to have significant interference, accompanied by damage to the antioxidant system. In addition, As3+ and/or Cu2+ activated the nuclear factor kappa B (NF-κB), inducing severe inflammation. At the same time, damaged structural integrity which might be caused by inflammation was discovered after hematoxylin and eosin (H&E) staining. Moreover, symbolic Th1/Th2 (Th, helper T cell) drift was also observed in treatment groups, meaning that immune function is left to be affected, and the increment in heat shock proteins may be a self-protective mechanism of gizzard. Interestingly, we found that the damage to the gizzard of chicken was aggravated in a time-dependent manner, and the combined exposure was more pathogenic than the single exposure, of which the mechanism needs further exploration. Together, this work helps move us toward a better understanding of the molecular mechanisms that mediate the interactions between Cu excess and As3+ exposures and possible health consequences in susceptible species.
Collapse
Affiliation(s)
- Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Juanjuan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
14
|
Zhao H, Wang Y, Liu J, Guo M, Fei D, Yu H, Xing M. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:741-748. [PMID: 31344536 DOI: 10.1016/j.envpol.2019.07.065] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Waterborne exposure to arsenic trioxide (As2O3) is inevitable due to its widespread industrial and agricultural applications. Oxidative stress and cascaded programmed cell death is now hypothesized to be the dominant mechanisms of arseniasis evidenced in vivo and in vitro. This study aimed to explore the interaction of divalent zinc ion (Zn2+), an efficient reactive oxygen species (ROS) scavenger with arsenite in the heart of common carp, and extensively investigated the exact signaling molecules involved. Significant induction of cardiotoxicity including oxidative stress, apoptosis and autophagy was evident in heart tissues following arsenite exposure (P < 0.05). The dissipation of antioxidant enzymes (SOD and CAT) was induced by ROS burst, leading to oxidative damage and lipid peroxidation (MDA). Arsenite induced classic apoptotic hallmarks, characterized by chromatin degradation and subsequent formation of clumps adjacent, and elevated expression of Bax/Bcl-2 and Caspase family, and also increased autophagic flux evidenced by accelerated formation (LC3) and degradation (p62) of autophagosomes. PI3K/Akt/mTOR pathway was phosphorylated inhibited, while MAPK signaling (p38, ERK and JNK) displayed elevated phosphorylation levels in arsenite-exposed heart tissues. In contrast, above phenomena were effectively inhibited by Zn2+, which supplement attenuated arsenite-induced myocardial toxicity through inhibition of apoptosis and autophagy via PI3K/Akt/mTOR pathway, as well as suppressing intracellular ROS cluster via activating antioxidative system via MAPK pathway. Our results provided experimental explanation and evidences for cardiotoxicity of arsenite. Furthermore, our findings hint that the application of zinc preparations may provide a candidate for the prevention and treatment for arsenic poisoning.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Juanjuan Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|