1
|
Liu YJ, Gao KX, Peng X, Wang Y, Wang JY, Hu MB. The great potential of polysaccharides from natural resources in the treatment of asthma: A review. Int J Biol Macromol 2024; 260:129431. [PMID: 38237839 DOI: 10.1016/j.ijbiomac.2024.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Despite significant progress in diagnosis and treatment, asthma remains a serious public health challenge. The conventional therapeutic drugs for asthma often have side effects and unsatisfactory clinical efficacy. Therefore, it is very urgent to develop new drugs to overcome the shortcomings of conventional drugs. Natural polysaccharides provide enormous resources for the development of drugs or health products, and they are receiving a lot of attention from scientists around the world due to their safety, effective anti-inflammatory and immune regulatory properties. Increasing evidence shows that polysaccharides have favorable biological activities in the respiratory disease, including asthma. This review provides an overview of primary literature on the recent advances of polysaccharides from natural resources in the treatment of asthma. The mechanisms and practicability of polysaccharides, including polysaccharides from plants, fungus, bacteria, alga, animals and others are reviewed. Finally, the further research of polysaccharides in the treatment of asthma are discussed. This review can provide a basis for further study of polysaccharides in the treatment of asthma and provides guidance for the development and clinical application of novel asthma treatment drugs.
Collapse
Affiliation(s)
- Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| |
Collapse
|
2
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
4
|
Xiong Y, Xiong M, Li Y, Qian J, Li Y, Han X, Tan J, Luo Y, Wang Q, Qin C. Chitosan oligosaccharide combined with running benefited the immune status of rats. Int Immunopharmacol 2020; 88:106915. [PMID: 32890793 DOI: 10.1016/j.intimp.2020.106915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 11/17/2022]
Abstract
Chitosan oligosaccharide (COS) degraded by chitosan, is an easily accessible and biocompatible natural molecule, which can facilitate the immune system. Running is one of the most effective forms of exercise. Persistence in running can effectively improve the body's resistance against pathogens. However, whether the combination of COS and running could benefit immune status still remains to be elucidated. We used Sprague-Dawley (SD) rats to explore the combinatory effect of COS and running. The organs and blood of the rats were collected after four weeks and the organ body mass index, biochemical and blood routine examination, cytokines, and T cells in the spleen and blood were detected and analyzed. In the group intragastric administration of COS only, the level of blood lactate dehydrogenase was increased, while the blood creatinine, red blood cells, lymphocytes, and serum TNF were decreased. Furthermore, COS combined with running promoted the development of spleen and lung, the level of lymphocytes, T cell and CD8+ T cell ratio in the blood, and serum TNF level. At the same time, the level of lactate dehydrogenase, serum IL-2, and T cell ratio in spleen were decreased. Therefore, our study indicated that COS combined with running could improve the immune status of rats.
Collapse
Affiliation(s)
- Youming Xiong
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China; Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Meng Xiong
- School of Life Sciences and Biotechnology, Hubei Engineering University, Xiaogan, Hubei 432000, China; Hubei Key Laboratory of Biomass-Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China
| | - Yangyang Li
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jin Qian
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yuwei Li
- School of Life Sciences and Biotechnology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Xu Han
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jing Tan
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yanli Luo
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Qiuxiang Wang
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Caiqin Qin
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| |
Collapse
|
5
|
Mao M, Li J, Bi A, Jia H, Li Q, Liu Y, Jiang X, Huang D, Xia S. Thymoquinone ameliorates the PM2.5-induced lung injury in rats. Exp Lung Res 2020; 46:297-307. [PMID: 32748670 DOI: 10.1080/01902148.2020.1801895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND This study aims to explore the effect of thymoquinone (TQ) on particulate matter 2.5 (PM2.5)-induced lung injury. METHODS The PM2.5 sample was provided by Shenyang Environment Monitor Central Station. Lung injury was established by intratracheal instillation PM2.5 (7.5 mg/kg) followed by TQ treatment (20 and 40 mg/kg) for 14 d in rats. Hematoxylin and eosin (HE) and Evans blue dye (EBD) staining were detected on lung tissues. ELISA, real-time PCR, western blotting and TUNEL assays were also performed. RESULTS The data showed that TQ diminished lung injury and EBD accumulation. The number of macrophages, neutrophils, eosinophils, and lymphocytes was ameliorated after TQ treatment. In addition, TQ suppressed the inflammation reaction parameters (interleukin-1β and -6, IL-1β and IL-6; tumor necrosis factor-α, TNF-α) and oxidative stress in PM2.5-induced lung injury. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO-1) were increased due to the treatment of TQ. The number of TUNEL-positive cells was prominently reduced in TQ-treated rats compared with that in PM2.5 group. Intratracheal instillation PM2.5 activated autophagy, whilst TQ blocked it in lung. CONCLUSIONS Taken together, this study provides the first in vivo evidence that TQ suppresses inflammation, oxidative stress, apoptosis, and autophagy in PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Mingqing Mao
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Jing Li
- Shenyang Environment Monitor Central Station, Key Laboratory of Atmospheric Organic Compound Monitoring and Analysis, Ministry of Environmental Protection, Shenyang, People's Republic of China
| | - Aiping Bi
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Hui Jia
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Qiong Li
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Xiaochuan Jiang
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Desheng Huang
- Department of Mathematics, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Shuyue Xia
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Maruthupandi M, Chandhru M, Rani SK, Vasimalai N. Highly Selective Detection of Iodide in Biological, Food, and Environmental Samples Using Polymer-Capped Silver Nanoparticles: Preparation of a Paper-Based Testing Kit for On-Site Monitoring. ACS OMEGA 2019; 4:11372-11379. [PMID: 31460241 PMCID: PMC6682123 DOI: 10.1021/acsomega.9b01144] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/18/2019] [Indexed: 05/14/2023]
Abstract
This work describes a facile synthesis of polymer-capped silver nanoparticles at room temperature. Chitosan oligosaccharide lactate-capped silver nanoparticles (COL-AgNPs) show the surface plasma resonance (SPR) band at 400 nm. The color of the COL-AgNPs was observed to be brownish yellow. The synthesized COL-AgNPs are stable for 5 months. The COL-AgNPs were characterized by UV-vis, X-ray diffraction, high-resolution transmission electron microscopy (HR-TEM), mass, and Fourier transform infrared spectral techniques. The obtained COL-AgNPs are monodispersed, and the range of the particle diameter was calculated to be 16.37 ± 0.15 nm by HR-TEM. We have utilized the COL-AgNPs as a probe to sense iodide (I-). The SPR band of COL-AgNPs was decreased after the addition of iodide, and the color of the solution changed to colorless. Based on the decreases in SPR band absorbance, the concentration of iodide was calculated. The detection limit was found to be 108.5 × 10-9 M (S/N = 3). Other interferences (825- and 405-fold) did not interfere with the detection of 1.48 × 10-6 M iodide. The sensing mechanism was also discussed. Finally, we have successfully applied our sensing system for the detection of iodide in tap water, river water, pond water, blood serum, urine, and food samples. Good recoveries are obtained with spiked iodide in the real samples. Importantly, we have developed a paper-based kit using wax-printed paper for the on-site monitoring of iodide. The developed paper-based kit absorbance was validated with the microplate reader. To the best of our knowledge, this is the first report that used six different real samples for the detection of iodide and development of the paper-based kit for on-site monitoring.
Collapse
|