1
|
Kamirova AM, Sizova EA, Shoshin DE, Ivanishcheva AP. The combined effect of ultrafine particles of cobalt and manganese oxides and Origanum vulgare herb extract on ruminal digestion in vitro. Vet World 2024; 17:189-196. [PMID: 38406366 PMCID: PMC10884588 DOI: 10.14202/vetworld.2024.189-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim At present, detailed studies are being conducted to confirm the safety of the use of metal-containing ultrafine particles (UFP) in animal feeding, preventing the possibility of negative effects on productive qualities and physiological state, as well as on the environment and final consumer, that is, humans. Thus, the purpose of this research was to study the safety of cobalt- and manganese-containing UFP (UFP Co3O4, Mn2O3 UFP) together with Origanum vulgare (PB) herb extract in a bioluminescence inhibition test, as well as the effect of this composition on ruminal digestion in vitro. Materials and Methods The safety of the studied samples was determined using a multifunctional microplate analyzer TECAN Infinite F200 (Tecan Austria GmbH, Austria), recording the luminescence value of the bacterial strain Escherichia coli K12 TG11 (Ecolum, JSC NVO Immunotech, Russia). Dry matter (DM) digestibility studies were performed using the in vitro method on an "artificial rumen" model using an ANKOM Daisy II incubator unit (AD II; USA). The number of protozoa in ruminal fluid was counted in a Goryaev chamber. The bacterial mass was assessed by differential centrifugation followed by drying. This method is based on differences in the sedimentation rate of particles that differ in size and density. Results UFP Co3O4 and Mn2O3 at concentrations above 1.5 × 10-5 and 1.9 × 10-3 mol/L, respectively, have a pronounced bactericidal effect, suppressing more than 50% of the luminescence of E. coli K12 TG1. The combined use of UFP metals and plant extract increases the luminescence of the test object, indicating its safety. The combined use of UFP and PB increases the digestibility of feed DM in vitro and the number of protozoa in 1 mL of ruminal fluid; however, the combination of UFP Mn2O3 + PB (13.8%) yielded the best result, which is recommended for further in vivo research. Conclusion Origanum vulgare extract reduces the toxicity of UFP Co3O4 and Mn2O3 in vitro, indicating that their combined use is safer.
Collapse
Affiliation(s)
- Aina Maratovna Kamirova
- Federal Research Centre for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Elena Anatolyevna Sizova
- Federal Research Centre for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, Orenburg, Russia
- Orenburg State University, Orenburg, Russia
| | - Daniil Evgenievich Shoshin
- Federal Research Centre for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, Orenburg, Russia
- Orenburg State University, Orenburg, Russia
| | - Anastasia Pavlovna Ivanishcheva
- Federal Research Centre for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
2
|
Huo Y, Ma F, Li T, Lei C, Liao J, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. Exposure to copper activates mitophagy and endoplasmic reticulum stress-mediated apoptosis in chicken (Gallus gallus) cerebrum. ENVIRONMENTAL TOXICOLOGY 2023; 38:392-402. [PMID: 36350156 DOI: 10.1002/tox.23701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
A large amount of copper (Cu) used in production activities can lead to the enrichment of Cu in the environment, which can cause toxicity to animals. However, the toxicity mechanism of Cu on the cerebrum is still uncertain. Hence, a total of 240 chickens were separated into four groups in this study to reveal the potential connection between mitophagy and endoplasmic reticulum (ER) stress-mediated apoptosis in the chicken cerebrum in the case of excess Cu exposure. The cu exposure situation was simulated by diets containing various levels of copper (11 mg/kg, control group; 110 mg/kg, group I; 220 mg/kg, group II and 330 mg/kg, group III) for 49 days. The results of histology showed that vacuolar degeneration was observed in the treated groups, and the mitochondria swell and autophagosomes formation were found under excess Cu treatment. Additionally, the expression of mitophagy (PINK1, Parkin, LC3I, LC3II and p62) and ER stress (GRP78, PERK, ATF6, IRE1α, XBP1, CHOP, and JNK) indexes were significantly upregulated under excess Cu exposure. Furthermore, the mRNA and protein expression of Bcl-2 were decreased, while Bak1, Bax, Caspase12, and Caspase3 were increased compared to the control group. In summary, this study demonstrated that an overdose of Cu could induce mitophagy and ER stress-mediated apoptosis in the chicken cerebrum. These findings revealed an important potential connection between Cu toxicity and cerebrum damage, which provided a new insight into Cu neurotoxicity.
Collapse
Affiliation(s)
- Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tingyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Kolosova II, Shatorna VF. Toxicity of cadmium salts on indicators of embryogenesis of rats. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Cadmium is a toxic heavy metal which is considered a dangerous environmental pollutant and has a detrimental effect on the organs of the reproductive system, the period of implantation and the development of embryos. The experiment presented in this article established the effect of cadmium salts (chloride and citrate) on the general progress of embryogenesis. For this purpose, 60 rats were randomly divided into three groups: control, experimental group with cadmium chloride exposure and experimental group with cadmium citrate exposure. Cadmium chloride solvent, cadmium citrate solvent at a dose of 1.0 mg/kg and distilled intragastric water were injected from the first to the thirteenth (first subgroup) and from the first to the twentieth days of embryogenesis (second subgroup). When cadmium chloride was injected, total embryonic (by 4.24 and 3.67 times), pre-implantation (by 6.50 and 14.03 times) and post-implantation mortality (by 3.07 and 2.49 times) increased with a reduction of the number of surviving fetuses by 24.0% and 25.9% compared with the control group on the 13th and 20th days of embryogenesis respectively. At the same time, during exposure to cadmium citrate, indicators of total embryonic mortality increased by 4.02 and 3.52 times, pre-implantation mortality by 6.04 and 13.03 times, and post-implantation mortality by 3.09 and 2.26 times, and indicators of the number of live fetuses decreased by 18.3% and 22.2% in relation to the control group. When determining the accumulation of cadmium in embryos on the 20th day of gestation, polyelement analysis of biological materials using the atomic emission method with electric arc atomization revealed a 15.83-fold increase in cadmium chloride and 9.00 times in cadmium citrate relative to the control group. Embryolethality rates increased in animals of both experimental groups while the number of live fetuses per female decreased, which indicated an obvious embryotoxic effect of cadmium compounds. It is would be useful to conduct histological studies, which will help detect changes at the tissue level and possibly explain the level of embryonic mortality.
Collapse
|
4
|
Mtengai K, Ramasamy S, Msimuko P, Mzula A, Mwega ED. Existence of a novel heavy metal-tolerant Pseudomonas aeruginosa strain Zambia SZK-17 Kabwe 1: the potential bioremediation agent in the heavy metal-contaminated area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:887. [PMID: 36239813 DOI: 10.1007/s10661-022-10565-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/25/2022] [Indexed: 06/16/2023]
Abstract
Bacterial biomass may serve as an important environmental cleaning agent to toxic heavy metal ions at the expense of chemical processes which are not environmentally friendly. This study aimed at characterizing bacterial agents which could serve as a potential in situ bioremediation agent at the site of isolation. The characterization was performed using both phenotypic and molecular approaches. A novel Pseudomonas aeruginosa strain Pseudomonas aeruginosa Zambia SZK17 Kabwe1 was successfully isolated, identified, and characterized. The strain showed a promising tolerance to heavy metals such as copper (2 mM), zinc, nickel (2 mM), cobalt (1 mM), and cadmium (0.5 mM) at the laboratory level. The bacterium has shown the bioaccumulation of at least 60% of copper (II) sulfate (0.3655 mg/l) with R = 69.75%, cadmium (II) chloride (0.0241 mg/l) with R = 69.98%, zinc (II) chloride (0.1389 mg/l) with R = 69.91%, nickel (II) chloride (0.1155 mg/l) with R = 69.92%, and cobalt (II) chloride (0.593 mg/l) with R = 69.92%. The highest bioaccumulation has been observed in heavy metals cadmium, zinc, nickel, and cobalt. Characterization of the bacterium on pH has revealed that at a very high pH (≥ 9) and lower (≤ 5.5) pH, the bacterium tended to have reduced growth with optimum growth at pH 8. The high temperature at around 40 °C had a negative effect on the growth performance of the bacterium while optimum growth was observed at 28 °C. This novel P. aeruginosa strain has shown the phenotypic attributes to become a potential bioremediation agent; however, further investigation needs to be done to understand the genes and or molecular mechanisms that drive their tolerance to multiple heavy metals.
Collapse
Affiliation(s)
- Karim Mtengai
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O. Box 21692, Kitwe, Zambia
- The Copperbelt University-Africa Center of Excellence for Sustainable Mining (CBU-ACESM), The Copperbelt University, Riverside, Jambo Drive, P.O. Box 21692, Kitwe, Zambia
| | - Subbaiya Ramasamy
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O. Box 21692, Kitwe, Zambia
| | - Peter Msimuko
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O. Box 21692, Kitwe, Zambia
| | - Alexanda Mzula
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3015, Chuo Kikuu, Morogoro, Tanzania.
| | - Elisa Daniel Mwega
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3015, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
5
|
Li C, Wang B, Lu X, Huang Y, Wang H, Xu D, Zhang J. Maternal exposure to cadmium from puberty through lactation induces abnormal reproductive development in female offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113927. [PMID: 35908533 DOI: 10.1016/j.ecoenv.2022.113927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Four-week-old female ICR mice were exposed to Cd through drinking water from puberty through lactation to investigate the effects of reproductive development in female offspring. Our results showed that maternal Cd exposure from puberty to lactation induced vaginal opening delay, and disturbed estrous cycle in the offspring on postnatal day (PND) 21, without affecting the body weight at vaginal opening. The histopathology results showed the increased primordial follicles and the decreased secondary follicles, and the mRNA level of Amh increased in the offspring's ovaries upon Cd exposure, suggesting the inhibition of ovarian follicular development on PND21. Moreover, the level of serum estradiol reduced and genes associated with steroidogenesis (3β-Hsd, P450scc and P450arom) were downregulated upon Cd exposure on PND 21. Thus, Cd may inhibit the follicular development via disturbing the mRNA level of genes associated with steroidogenesis and then the synthesis of estradiol in prepuberty. Taken together, despite the lack of attention to estrous cycle at termination, maternal Cd exposure from puberty to lactation induced the adverse effects on reproductive development of female offspring, including the delay of vaginal opening, irregular estrous cycle and inhibition of follicular development, via disturbing the mRNA level of genes associated with follicular development and steroidogenesis.
Collapse
Affiliation(s)
- Chengxi Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Silva FL, Oliveira-Júnior ES, Silva MHME, López-Alonso M, Pierangeli MAP. Trace Elements in Beef Cattle: A Review of the Scientific Approach from One Health Perspective. Animals (Basel) 2022; 12:ani12172254. [PMID: 36077974 PMCID: PMC9454500 DOI: 10.3390/ani12172254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The objective was to investigate the context, approach and research topics present in the papers that analysed trace elements in beef cattle to identify gaps and scientific perspectives for the sustainable management of trace elements in livestock. The main research groups came from the United States, Spain, Japan, Brazil, India and Slovakia, which represented 31% of the papers produced. Only 37% of studies addressed aspects that integrated animal, environmental and human health. The reviewed papers concerned 56 elements and 15 bovine tissues (Cu, Zn, Pb, liver, muscle and kidney highlighted). The main gaps were (1) lack of research in developing countries, (2) the need to understand the impact of different environmental issues and their relationship to the conditions in which animals are raised, and (3) the need to understand the role of many trace elements in animal nutrition and their relationship to environmental and human health. Finally, we highlight possible ways to expand knowledge and provide innovations for broad emerging issues, primarily through expanding collaborative research networks. In this context, we suggest the adoption of the One Health approach for planning further research on trace elements in livestock. Moreover, the One Health approach should also be considered for managers and politicians for a sustainable environmental care and food safety.
Collapse
Affiliation(s)
- Fernando Luiz Silva
- Department of Education, Federal Institute of Mato Grosso, Alta Floresta 78580-000, MT, Brazil
| | - Ernandes Sobreira Oliveira-Júnior
- Center of Ethnoecology, Limnology and Biodiversity, Laboratory of Ichthyology of the Pantanal North, University of Mato Grosso State, Postgraduate Program of Environmental Science, Cáceres 78200-000, MT, Brazil
| | | | - Marta López-Alonso
- Department of Animal Pathology, University of Santiago de Compostela, 27002 Lugo, Spain
- Correspondence:
| | - Maria Aparecida Pereira Pierangeli
- Department of Animal Science, Postgraduate Program of Environmental Science, University of Mato Grosso State, Pontes e Lacerda 78250-000, MT, Brazil
| |
Collapse
|
7
|
Sizova EA, Miroshnikov SA, Notova SV, Marshinskaya OV, Kazakova TV, Tinkov AA, Skalny AV. Serum and Hair Trace Element and Mineral Levels in Dairy Cows in Relation to Daily Milk Yield. Biol Trace Elem Res 2022; 200:2709-2715. [PMID: 34476676 DOI: 10.1007/s12011-021-02878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
The objective of the present study was to assess hair and serum trace element and mineral levels in dairy cows in relation to daily milk yield. A total of 70 healthy 5-6-year-old Simmental cows were divided into two groups (n = 35) with high and low daily milk yield using median as a cut-off value. Hair and serum trace element and mineral content was evaluated using inductively coupled plasma mass-spectrometry. A nearly twofold difference in daily milk yield (43.8 ± 9.7 vs 21.3 ± 7.1 L/day, p < 0.001) was significantly associated with 11% lower hair Cu (p = 0.043) and 35% higher Se levels (p = 0.058) content when compared animals with lower daily milk yield. Serum trace element levels were found to be more tightly associated with milk productivity in dairy cows. Particularly, serum levels of Se and Zn were found to be 73 and 35% higher in cows with higher milk productivity in comparison to animals with lower milk production, respectively. Serum Co levels also tended to increase with higher milk productivity. Serum minerals including Ca, Mg, and P were also found to be higher in highly productive cows by 6%, 14%, and 71%, respectively. The overall regression model based on serum trace element and mineral levels accounted for 38% of daily milk production variability. Generally, improvement of essential trace element and mineral supply, as well as prevention of copper overload in dairy cows, may be considered the potential tool for modulation of milk productivity.
Collapse
Affiliation(s)
- Elena A Sizova
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, Orenburg, 460000, Russia
| | - Sergey A Miroshnikov
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, Orenburg, 460000, Russia
- Orenburg State University, Pobedy Ave., 13, Orenburg, 460000, Russia
| | - Svetlana V Notova
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, Orenburg, 460000, Russia
- Orenburg State University, Pobedy Ave., 13, Orenburg, 460000, Russia
| | - Olga V Marshinskaya
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, Orenburg, 460000, Russia
| | - Tatiana V Kazakova
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, Orenburg, 460000, Russia
| | - Alexey A Tinkov
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, Orenburg, 460000, Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Anatoly V Skalny
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, Orenburg, 460000, Russia.
- IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
- K.G. Razumovsky Moscow State University of Technologies and Management, Zemlyanoi Val St., 73, Moscow, 109004, Russia.
| |
Collapse
|
8
|
Sassia S, Amine B, Nadia B, Hadda A, Smail M. Investigation of single and combined effects of repeated oral cadmium and lead administration in ewes. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Madanan MT, Varghese GK, Shah IK. Heavy metal phytoremediation potential of the roadside forage Chloris barbata Sw. (swollen windmill grass) and the risk assessment of the forage-cattle-human food system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45096-45108. [PMID: 33860427 DOI: 10.1007/s11356-021-13840-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
This study presents the assessment of the risks incidental to the growth of the common tropical grass species Chloris barbata Sw. (swollen windmill grass) on road margins contaminated with Pb and Cd. Pot experiments were first carried out to quantify the Pb and Cd accumulation potential of the plant species in various plant parts as a function of the metal concentration in soil. C. barbata was found to be a hyperaccumulator for Cd (BCF>1, for aerial parts) and an excluder of Pb (BCF<1, for aerial parts). As the plant was found to accumulate Pb in its roots with TF<1, it can be considered a phytostabilizer of Pb. The mathematical relationship developed between soil concentrations of Pb and Cd and their corresponding concentrations in aerial parts were used in combination with the concentrations of these heavy metals reported in roadside soils to obtain estimates of their accumulation in the forage and consequently in the animal organs. Risk to the consumers of offal was estimated. It was found that the consumption of kidney meat was riskier than the consumption of liver meat. Furthermore, it was seen that despite the nearly two order less concentrations of Cd in roadside soils compared to Pb, it was posing a higher risk. For the median concentrations of Pb reported in roadside soils and cattle feeding exclusively on C. barbata growing on roadside soils, the HQ exceeded 1 for weekly consumption of kidney meat above 650 g. For median Cd concentrations, consumption of kidney meat above 230 g/week resulted in HQ>1. The scenario considered for risk assessment is significant for India, where stray grazing of cattle on road margins is common and offal offers a cheap source of animal protein for the economically poor.
Collapse
|
10
|
Martins KP, Padilha VH, Damasceno TK, Souza MA, Silva EM, Ribeiro M, Pereira AH, Colodel EM. Chronic copper poisoning in beef cattle in the state of Mato Grosso, Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Copper is an essential micromineral in animal feed; however, when consumed in excess, it can cause liver necrosis, hemolytic crisis, hemoglobinuric nephrosis and death in cattle. Although uncommon in this species, copper poisoning occurs as a result of exacerbated supplementation, deficiency of antagonist microminerals, or previous liver lesions. An outbreak of chronic copper poisoning is reported in semi-confined cattle after supplementation with 50 mg/Kg of dry matter copper. The cattle showed clinical signs characterized by anorexia, motor incoordination, loss of balance, jaundice, brownish or black urine, diarrhea and death, or were found dead, 10 to 302 days after consumption. Of the 35 cattle that died, 20 underwent necropsy, whose frequent findings were jaundice, enlarged liver with evident lobular pattern, black kidneys, and urinary bladder with brownish to blackish content. Microscopically, the liver showed vacuolar degeneration and/or zonal hepatocellular centrilobular or paracentral coagulative necrosis, in addition to cholestasis, mild periacinal fibrosis, apoptotic bodies, and mild to moderate mononuclear inflammation. Degeneration and necrosis of the tubular epithelium and intratubular hemoglobin cylinders were observed in the kidneys. Copper levels in the liver and kidneys ranged from 5,901.24 to 28,373.14 μmol/kg and from 303.72 to 14,021 μmol/kg, respectively. In conclusion, copper poisoning due to excessive nutritional supplementation is an important cause of jaundice, hemoglobinuria, and death in semi-confined cattle.
Collapse
|