1
|
Ma C, Zhong X, Liu R, Yang X, Xie Z, Zhang Y, Xu Y, Wang H, He C, Du G, Gong T, Sun X. Co-delivery of oxaliplatin prodrug liposomes with Bacillus Calmette-Guérin for chemo-immunotherapy of orthotopic bladder cancer. J Control Release 2024; 365:640-653. [PMID: 38042374 DOI: 10.1016/j.jconrel.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
To reduce recurrence rate after transurethral resection of bladder tumor, long-term intravesical instillations of Bacillus Calmette-Guérin (BCG) and/or chemotherapeutic drugs is the standard treatment for non-muscle invasive bladder carcinoma. However, the main challenges of intravesical therapy, such as short retention time and poor permeability of drugs in the bladder, often require frequent and high-dose administrations, leading to significant adverse effects and financial burden for patients. Aiming at addressing these challenges, we developed a novel approach, in which the cell-penetrating peptide modified oxaliplatin prodrug liposomes and a low-dose BCG were co-delivered via a viscous chitosan solution (LRO-BCG/CS). LRO-BCG/CS addressed these challenges by significantly improving the retention capability and permeability of chemotherapy agents across the bladder wall. Then, oxaliplatin triggered the immunogenic cell death, and the combination of BCG simultaneously further activated the systemic anti-tumor immune response in the MB49 orthotopic bladder tumor model. As a result, LRO-BCG/CS demonstrated superior anti-tumor efficacy and prolonged the survival time of tumor-bearing mice significantly, even at relatively low doses of oxaliplatin and BCG. Importantly, this combinational chemo-immunotherapy showed negligible side effects, offering a promising and well-tolerated therapeutic strategy for bladder cancer patients.
Collapse
Affiliation(s)
- Cheng Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaojia Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Abdullah S, Naguib M, Salah El-Din AED, Sayed AEDH. Hematobiochemical and histopathological alterations in Nile Tilapia (Oreochromis niloticus) exposed to ethidium bromide: The protective role of Spirulina platensis. AQUACULTURE AND FISHERIES 2024; 9:93-103. [DOI: 10.1016/j.aaf.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Jiang Z, Li J, Huang G, Yan L, Ma J. Efficient removal of ethidium bromide from aqueous solutions using chromatin-loaded chitosan polyvinyl alcohol composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3276-3295. [PMID: 38085489 DOI: 10.1007/s11356-023-31364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
In this work, a novel chromatin-loaded chitosan polyvinyl alcohol composite was developed as a simple, efficient and environmentally friendly adsorbent for the efficient removal of ethidium bromide (EtBr). SEM images showed that the composites were characterized by dense porous and uniformly distributed morphology. The BET analysis showed the presence of mesopores and macropores in the composites. FTIR and XRD results showed that the chromatin was uniformly dispersed in the chitosan-polyvinyl alcohol carrier through hydrogen bonding. The fluorescence microscopy images showed the change of fluorescence effect before and after the adsorption of the material, which indicated that the chromatin was uniformly distributed in the composites and had a good adsorption effect. The optimal experimental conditions were T = 30℃, t = 120 min, pH = 7.4, m = 0.2 g when the composite with only 5% chromatin content had the ability to adsorb EtBr efficiently (minimum concentration 2 mg·L-1: adsorption rate 99%; maximum concentration 20 mg·L-1: adsorption rate 90%).The adsorption kinetics and thermodynamics showed that the EtBr adsorption kinetics of the composite conformed to the pseudo-second-order kinetic model (0.995 < R2 < 0.999) and the Freundlich isothermal model, and was a spontaneous process (ΔH < 0). This study on the immobilization of chromatin will provide a new way and reference for the application of chromatin in the treatment of EtBr pollutants.
Collapse
Affiliation(s)
- Zhikang Jiang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Junsheng Li
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China.
| | - Guoxia Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Liujuan Yan
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Ji Ma
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| |
Collapse
|
4
|
Huang G, Ma J, Li J, Yan L. Study on the interaction between aflatoxin M1 and DNA and its application in the removal of aflatoxin M1. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zhang J, Li J, Huang G, Yan L. DNA Extracted from Byproducts of Common Carp Testis and Application in Removing Ethidium Bromide from Pollutants. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2080516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jie Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, Guangxi, P. R. China
| | - Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, Guangxi, P. R. China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, Guangxi, P. R. China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, Guangxi, P. R. China
| |
Collapse
|
6
|
Salah El-Din AED, Abdullah S, Sayed AEDH. Antioxidant capacity and DNA damage in Nile tilapia (Oreochromis niloticus) exposed to Ethidium bromide: A protective role for Spirulina Platensis. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Zhang M, Cao K, Mei L, Wang X, Liao X, Qiao X, Hong C. Detection of AFP by Electrochemical Immunosensor Based on Ag/Fe
3
O
4
/g‐C
3
N
4. ChemistrySelect 2021. [DOI: 10.1002/slct.202003896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Kaihang Cao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Xiao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Xiaochen Liao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Xiuwen Qiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| |
Collapse
|
8
|
Zhang J, Yang W, Li S, Bian L. Fluorescent reversible regulation of cysteamine-capped ZnSe quantum dots successively induced by photoinduced electron transfer of herring sperm DNA and intercalation binding of ethidium bromide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119116. [PMID: 33385973 DOI: 10.1016/j.saa.2020.119116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/13/2020] [Accepted: 10/17/2020] [Indexed: 06/12/2023]
Abstract
A fluorescent reversible regulation was studied by fluorescence spectra, ultraviolet-visible spectra in the combination of molecular docking, which based on the photoinduced electron transfer(PET) from hsDNA (herring sperm DNA) to CA (cysteamine)-capped ZnSe QDs (quantum dots) and intercalation of ethidium bromide (EB) into hsDNA. It was proven that the QDs bound with the adding hsDNA by electrostatic force and formed 1:1 hsDNA-QDs complexes, leading to the PET from hsDNA to QDs, and consequently the fluorescence quenching of the QDs; with EB being added in the complex solution, it bound with hsDNA by intercalation interaction and caused hsDNA releasing from hsDNA-QDs complex with forming 2.5:1 EB-hsDNA complex, leading to the recovery of fluorescence, based on the greater binding constant (1.74 × 106 L·mol-1) of hsDNA with the embedded EB comparing to that of QDs with the captured hsDNA (4.25 × 104 L·mol-1). A good linear relationship existed between the fluorescence recovery yield and the EB concentrations under the range of 1.0-12.0 × 10-6 mol·L-1 with bare interference of related substances. This work provided some useful insights into the study of binding mechanism between DNAs with their intercalators and fluorescence bi-direction regulation, and showed great potential for the determination of trace EB.
Collapse
Affiliation(s)
- Jiaxin Zhang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Wenhui Yang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Shasha Li
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
9
|
de Almeida HC, Salomão ALDS, Lambert J, Teixeira LCRS, Marques M. Phycoremediation potential of microalgae species for ethidium bromide removal from aqueous media. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1168-1174. [PMID: 32208865 DOI: 10.1080/15226514.2020.1743968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ethidium Bromide (EtBr) is an organic compound used in molecular biology investigations. EtBr ability of intercalating in the DNA molecule makes it a toxic substance. The objective was to evaluate the phycoremediation potentials of Chlorella vulgaris, Desmodesmus subspicatus and Raphidocelis subcapitata tested separately and in a mixture (Mix) for EtBr removal from the aqueous medium. Experiments were conducted using an initial algae biomass of 106 cell/mL, exposed to 500 µg/L of EtBr. The removal efficiency (µg EtBr L-1) after 3 h in each treatment were: Mix (72.8 µg.L-1) >D. subspicatus (48.4 µg.L-1) >R. subcapitata (24.6 µg.L-1) >C. vulgaris (19.9 µg.L-1). However, when EtBr mass reduction per microalgae density is considered (ng.algae-1), the efficiency ranking changes to: D. subspicatus (1.9 × 10-5 ng.algae-1) >C. vulgaris (1.4 × 10-5 ng.algae-1) >Mix (9.8 × 10-6 ng.algae-1) >R. subcapitata (2.8 × 10-6 ng.algae-1). The results suggest that initial algal population density is a determinant factor for efficient EtBr removal by microalgae species in short term treatments. In order to obtain 100% of EtBr removal, it should be necessary 1010, 1010 and 1011 algae.mL-1 of C. vulgaris, D. subspicatus and R. subcapitata, respectively. The results strongly suggest phycoremediation can be explored as an alternative method for EtBr removal.
Collapse
Affiliation(s)
- Heleno Cavalcante de Almeida
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - André Luís de Sá Salomão
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Janaina Lambert
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | | | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Sun T, Fu M, Xing J, Ge Z. Magnetic nanoparticles encapsulated laccase nanoflowers: evaluation of enzymatic activity and reusability for degradation of malachite green. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:29-39. [PMID: 32293586 DOI: 10.2166/wst.2020.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic laccase nanoflowers (MNFs-Lac) were successfully prepared through encapsulating Fe3O4 magnetic nanoparticles into the interior of laccase nanoflowers by grafting N-(phosphonomethyl)iminodiacetic acid (PMIDA) as an interconnecting bridge between the magnetic nanoparticles and copper ions. The characterizations by scanning electron microscopy and transmission electron microscopy showed that MNFs-Lac were spherical, porous and flower-like crystals with diameters of ∼10 μm, and Fe3O4 nanoparticles were encapsulated in the interior of MNFs-Lac evenly. The enzymatic activity and reusability of MNFs-Lac were evaluated based on the degradation efficiency for malachite green (MG). The degradation parameters, concerning initial MG concentration, dosage of MNFs-Lac, reaction temperature, pH value and reaction time, were optimized through single-factor experiments. Under the optimal conditions, 25 mg·L-1 MG can be degraded almost completely by 1.5 g·L-1 MNFs-Lac within 15 min. When the MNFs-Lac were reused for 18 times, the degradation efficiency of MG was still as high as 90%. These results suggested that the modified preparation method improved greatly the reusability of MNFs-Lac, which made them more suitable to degrade MG in a water environment.
Collapse
Affiliation(s)
- Tingting Sun
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China E-mail:
| | - Meihua Fu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China E-mail:
| | - Jinfeng Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China E-mail:
| | - Zhiqiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China E-mail:
| |
Collapse
|