1
|
Zheng H, Du X, Ma Y, Zhao W, Zhang H, Yao J, Shi Y, Zhao C. Combined assessment of health hazard and odour impact of soils at a contaminated site: a case study on a defunct pharmaceuticals factory in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7679-7692. [PMID: 37410198 DOI: 10.1007/s10653-023-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Surveys and assessments of contaminated sites primarily focus on hazardous pollutants in the soil with less attention paid to odorants. This makes the management of contaminated sites difficult. In this study, hazardous and odorous pollutants in the soil were assessed for a large site that was previously used for production of pharmaceuticals to determine the degree and characteristics of soil contamination at pharmaceutical production sites, for undertaking rational remediation measures. The main hazardous pollutants at the study site were triethylamine, n-butyric acid, benzo(a)pyrene (BaP), N-nitrosodimethylamine (NDMA), dibenzo(a,h)anthracene (DBA), total petroleum hydrocarbons (C10-C40) (TPH), and 1,2-dichloroethane; TEA, BA, and isovaleric acid (IC) were the main odorants. As the type and distribution of hazardous and odorous pollutants differ, it is necessary to separately assess the impact of these pollutants at a contaminated site. Soils in the surface layer pose significant non-carcinogenic (HI = 68.30) and carcinogenic risks (RT = 3.56E-5), whereas those in the lower layer only pose non-carcinogenic risks (HI > 7.43). Odorants were found at considerable concentrations both in the surface and lower layers, with the maximum concentrations being 29,309.91 and 41.27, respectively. The findings of this study should improve our understanding of soil contamination at former pharmaceutical production sites and should inform the assessment of the risks posed by contaminated sites, with problems associated with odour, and possible remediation strategies.
Collapse
Affiliation(s)
- Hongguang Zheng
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
- School of Chemical and Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, China
| | - Xiaoming Du
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, China
| | - Weiguang Zhao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Hailing Zhang
- Hebei Zongda Environmental Technology Co., LTD, Shijiazhuang, 050000, Hebei, China
| | - Juejun Yao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Yi Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Caiyun Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Hawko C, Verriele M, Hucher N, Crunaire S, Leger C, Locoge N, Savary G. A review of environmental odor quantification and qualification methods: The question of objectivity in sensory analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148862. [PMID: 34328921 DOI: 10.1016/j.scitotenv.2021.148862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
For several years, various issues have up surged linked to odor nuisances with impacts on health and economic concerns. As awareness grew, recent development in instrumental techniques and sensorial analysis have emerged offering efficient and complementary approaches regarding environmental odor monitoring and control. While chemical analysis faces several obstacles, the sensory approach can help overcome them. Therefore, this latter may be considered as subjective, putting the reliability of the studies at risk. This paper is a review of the most commonly sensory methodology used for quantitative and qualitative environmental assessment of odor intensity (OI), odor concentration (OC), odor nature (ON) and hedonic tone (HT). For each of these odor dimensions, the assessment techniques are presented and compared: panel characteristics are discussed; laboratory and field studies are considered and the objectivity of the results is debated. For odor quantification, the use of a reference scale for OI assessment offers less subjectivity than other techniques but at the expense of ease-of-use. For OC assessment, the use of dynamic olfactometry was shown to be the least biased. For odor qualification, the ON description was less subjective when a reference-based lexicon was used but at the expense of simplicity, cost, and lesser panel-training requirements. Only when assessing HT was subjectivity an accepted feature because it reflects the impacted communities' acceptance of odorous emissions. For all discussed dimensions, field studies were shown to be the least biased due to the absence of air sampling, except for OC, where the dispersion modeling approach also showed great potential. In conclusion, this paper offers the reader a guide for environmental odor sensory analysis with the capacity to choose among different methods depending on the study nature, expectations, and capacities.
Collapse
Affiliation(s)
- Charbel Hawko
- IMT Lille Douai, SAGE, Université de Lille, F-59500 Douai, France; Normandie Univ, UNIHAVRE, FR3038 CNRS, URCOM, 76600 Le Havre, France
| | - Marie Verriele
- IMT Lille Douai, SAGE, Université de Lille, F-59500 Douai, France
| | - Nicolas Hucher
- Normandie Univ, UNIHAVRE, FR3038 CNRS, URCOM, 76600 Le Havre, France
| | - Sabine Crunaire
- IMT Lille Douai, SAGE, Université de Lille, F-59500 Douai, France
| | | | - Nadine Locoge
- IMT Lille Douai, SAGE, Université de Lille, F-59500 Douai, France
| | - Géraldine Savary
- Normandie Univ, UNIHAVRE, FR3038 CNRS, URCOM, 76600 Le Havre, France.
| |
Collapse
|
3
|
Determination of Dose–Response Relationship to Derive Odor Impact Criteria for a Wastewater Treatment Plant. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Municipal wastewater treatment plants (WWTPs) inside cities have been the major complained sources of odor pollution in China, whereas there is little knowledge about the dose–response relationship to describe the resident complaints caused by odor exposure. This study explored a dose–response relationship between the modelled exposure and the annoyance surveyed by questionnaires. Firstly, the time series of odor concentrations were preliminarily simulated by a dispersion model. Secondly, the perception-related odor exposures were further calculated by combining with the peak to mean factors (constant value 4 (Germany) and 2.3 (Italy)), different time periods of “a whole year”, “summer”, and “nighttime of summer”, and two approaches of odor impact criterion (OIC) (“odor-hour” and “odor concentration”). Thirdly, binomial logistic regression models were used to compare kinds of perception-related odor exposures and odor annoyance by odds ratio, goodness of fit and predictive ability. All perception-related odor exposures were positively associated with odor annoyance. The best goodness of fit was found when using “nighttime of summer” in predicting odor-annoyance responses, which highlights the importance of the time of the day and the time of the year weighting. The best predictive performance for odor perception was determined when the OIC was 4 ou/m3 at the 99th percentile for the odor exposure over time periods of nighttime of summer. The study of dose–response relationship could be useful for the odor management and control of WWTP to maximize the satisfaction of air quality for the residents inside city.
Collapse
|
4
|
Odor Annoyance Assessment by Using Logistic Regression on an Example of the Municipal Sector. SUSTAINABILITY 2020. [DOI: 10.3390/su12156102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Around the sewage treatment plant, in the area affected by a large number of complaints about odor annoyance, field measurements of odor properties and questionnaires were carried out. It was confirmed that the inhabitants of the zone closest to the plant are most exposed to the smell, the most intense smell comes from the sludge dryer building, and smells from primary settling tanks and sediment plots are perceived as unpleasant. The analysis of surveys confirmed the problem of odor nuisance, especially in the immediate vicinity, where over 50% of respondents considered odor annoyance as extreme. A division of respondents was introduced into those experiencing severe nuisance and those for whom the smell was not annoying. Then, to relate the probability of occurrence of odor nuisance with a group of independent variables, logistic regression was used to describe the impact of independent variables on the dichotomous dependent variable. It has been shown that the likelihood of experiencing odor nuisance increases with the increase in the intensity of current odors, the parallel noise, and in people who focus on the existing smell, and decreases with increasing satisfaction with their health and in the case of regularly occurring odor.
Collapse
|
5
|
Comparing Annoyance Potency Assessments for Odors from Different Livestock Animals. ATMOSPHERE 2019. [DOI: 10.3390/atmos10110659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: When it comes to estimating the annoyance potency of odors, European countries relate to different guidelines. In a previous study we compared complaint rates for different agricultural odors, but due to different guidelines, the results we obtained are hard to generalize. (2) Methods: We compare our findings on complaint rates to Dutch and German findings on annoyance rates, using diverse regression models. We also discuss whether the use of the polarity profile for hedonic odor quality could improve annoyance potency assessment. This is demonstrated by comparing the graphical profiles of two different odor types (swine and cattle). (3) Results: Official complaint rates are comparable to a percentage of annoyed residents. Confounder variables such as personal variables do not greatly contribute to annoyance. However, individual emission sites also showed an important influence on complaints and hence on annoyance. Considering the hedonic quality of odors via the polarity profile method for improving an annoyance potency assessment cannot be recommended when using the given state of the method. This is particularly true when it comes to the rating of specific odors, as the method then seems to lack reliability. (4) Conclusions: Where data on annoyance rates are lacking, complaint data could be used instead.
Collapse
|