1
|
Mondal S, Chakraborty D. Root growth and physiological responses in wheat to topsoil and subsoil compaction with or without artificial vertical macropores. Heliyon 2023; 9:e18834. [PMID: 37576250 PMCID: PMC10415892 DOI: 10.1016/j.heliyon.2023.e18834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
The process of soil compaction can cause various stresses on roots, ultimately limiting their growth and development within the soil. Understanding this phenomenon in real-world conditions can be challenging since the growth of roots is influenced by the soil environment. To investigate this issue, four experiments were conducted to examine the impact of topsoil (two in pots: with clay loam and sandy loam soils under two soil water regimes) and subsoil (in rhizobox: one with clay loam soil and the other with sandy loam soil, containing artificial vertical macropores) compaction on the relationship between edaphic factors and the physiological response of wheat roots. The topsoil compaction reduced root length, volume, and weight by 30-50% and the root diameter by ∼15% compared to the non-compact soil. The effect was reduced in the soil with higher clay content (clay loam), especially under the limited soil water condition. Plant physiological responses were adversely affected by compaction with a reduction in plant height. The transpiration rate was highly impacted (21-47% reduction) with the build-up of intercellular CO2 content in leaves (13-31%), especially with limited water applications. Root growth was severely restricted (>60%) in the compact subsoil layer, although the surface area and volume of roots increased in the overlying non-compact layer. Naturally occurring or artificial vertical macropores acted as escape channels, facilitating the roots to pass through the compact subsoil and grow abundantly in the loose soil below. However, plants in field conditions encounter a mix of loose and compact soil zones. By studying how roots respond to this soil heterogeneity, we can develop strategies to reduce the negative effects of soil compaction.
Collapse
Affiliation(s)
| | - Debashis Chakraborty
- Division of Agricultural Physics, ICAR Indian Agricultural Research Institute, New Delhi, 110 012, India
| |
Collapse
|
2
|
Wang S, Zhou T, Zhao H, Zhang K, Cui J. Temporal and spatial changes in rhizosphere bacterial diversity of mountain Rhododendron mucronulatum. Front Microbiol 2023; 14:1201274. [PMID: 37415822 PMCID: PMC10321304 DOI: 10.3389/fmicb.2023.1201274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
To better conserve the ecology of the wild Rhododendron mucronulatum range, we studied the rhizosphere microenvironment of R. mucronulatum in Beijing's Yunmeng Mountain National Forest Park. R. mucronulatum rhizosphere soil physicochemical properties and enzyme activities changed significantly with temporal and elevational gradients. The correlations between soil water content (SWC), electrical conductivity (EC), organic matter content (OM), total nitrogen content (TN), catalase activity (CAT), sucrose-converting enzyme activity (INV), and urease activity (URE) were significant and positive in the flowering and deciduous periods. The alpha diversity of the rhizosphere bacterial community was significantly higher in the flowering period than in the deciduous period, and the effect of elevation was insignificant. The diversity of the R. mucronulatum rhizosphere bacterial community changed significantly with the change in the growing period. A network analysis of the correlations revealed stronger linkages between the rhizosphere bacterial communities in the deciduous period than in the flowering period. Rhizomicrobium was the dominant genus in both periods, but its relative abundance decreased in the deciduous period. Changes in the relative abundance of Rhizomicrobium may be the main factor influencing the changes in the R. mucronulatum rhizosphere bacterial community. Moreover, the R. mucronulatum rhizosphere bacterial community and soil characteristics were significantly correlated. Additionally, the influence of soil physicochemical properties on the rhizosphere bacterial community was larger than that of enzyme activity on the bacterial community. We mainly analyzed the change patterns in the rhizosphere soil properties and rhizosphere bacterial diversity of R. mucronulatum during temporal and spatial variation, laying the foundation for further understanding of the ecology of wild R. mucronulatum.
Collapse
Affiliation(s)
- Sirui Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Tiantian Zhou
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Hewen Zhao
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Jinteng Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Ancient Tree Health and Culture Engineering Technology Research Center, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
3
|
Qin H, Wang J, Zhou J, Qiao J, Li Y, Quan R, Huang R. Abscisic acid promotes auxin biosynthesis to inhibit primary root elongation in rice. PLANT PHYSIOLOGY 2023; 191:1953-1967. [PMID: 36535001 PMCID: PMC10022642 DOI: 10.1093/plphys/kiac586] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/19/2022] [Indexed: 06/01/2023]
Abstract
Soil compaction is a global problem causing inadequate rooting and poor yield in crops. Accumulating evidence indicates that phytohormones coordinately regulate root growth via regulating specific growth processes in distinct tissues. However, how abscisic acid (ABA) signaling translates into auxin production to control root growth during adaptation to different soil environments is still unclear. In this study, we report that ABA has biphasic effects on primary root growth in rice (Oryza sativa) through an auxin biosynthesis-mediated process, causing suppression of root elongation and promotion of root swelling in response to soil compaction. We found that ABA treatment induced the expression of auxin biosynthesis genes and auxin accumulation in roots. Conversely, blocking auxin biosynthesis reduced ABA sensitivity in roots, showing longer and thinner primary roots with larger root meristem size and smaller root diameter. Further investigation revealed that the transcription factor basic region and leucine zipper 46 (OsbZIP46), involved in ABA signaling, can directly bind to the YUCCA8/rice ethylene-insensitive 7 (OsYUC8/REIN7) promoter to activate its expression, and genetic analysis revealed that OsYUC8/REIN7 is located downstream of OsbZIP46. Moreover, roots of mutants defective in ABA or auxin biosynthesis displayed the enhanced ability to penetrate compacted soil. Thus, our results disclose the mechanism in which ABA employs auxin as a downstream signal to modify root elongation and radial expansion, resulting in short and swollen roots impaired in their ability to penetrate compacted soil. These findings provide avenues for breeders to select crops resilient to soil compaction.
Collapse
Affiliation(s)
- Hua Qin
- Authors for correspondence: (H.Q.); (R.H.)
| | | | | | - Jinzhu Qiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | | |
Collapse
|
4
|
Das TK, Kabir A, Zhao W, Stenstrom MK, Dittrich TM, Mohanty SK. A review of compaction effect on subsurface processes in soil: Implications on stormwater treatment in roadside compacted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160121. [PMID: 36370790 DOI: 10.1016/j.scitotenv.2022.160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Sustainable cities require spacious infrastructures such as roadways to serve multiple functions, including transportation and water treatment. This can be achieved by installing stormwater control measures (SCM) such as biofilters and swales on the roadside compacted soil, but compacted soil limits infiltration and other functions of SCM. Understanding the effect of compaction on subsurface processes could help design SCM that could alleviate the negative impacts of compaction. Therefore, we synthesize reported data on compaction effects on subsurface processes, including infiltration rate, plant health, root microbiome, and biochemical processes. The results show that compaction could reduce runoff infiltration rate, but adding sand to roadside soil could alleviate the negative impact of compaction. Compaction could decrease the oxygen diffusion rate in the root zone, thereby affecting plant root activities, vegetation establishment, and microbial functions in SCM. The impacts of compaction on carbon mineralization rate and root biomass vary widely based on soil type, aeration status, plant species, and inherent soil compaction level. As these processes are critical in maintaining the long-term functions of SCM, the analysis would help develop strategies to alleviate the negative impacts of compaction and turn road infrastructure into a water solution in sustainable cities.
Collapse
Affiliation(s)
- Tonoy K Das
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| | - Alija Kabir
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Weiyang Zhao
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Michael K Stenstrom
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Timothy M Dittrich
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| |
Collapse
|
5
|
Yang L, Wu Q, Liang H, Yin L, Shen P. Integrated analyses of transcriptome and metabolome provides new insights into the primary and secondary metabolism in response to nitrogen deficiency and soil compaction stress in peanut roots. FRONTIERS IN PLANT SCIENCE 2022; 13:948742. [PMID: 36247623 PMCID: PMC9554563 DOI: 10.3389/fpls.2022.948742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Peanut (Arachis hypogaea L.) is an important oil crop globally because of its high edible and economic value. However, its yield and quality are often restricted by certain soil factors, especially nitrogen (N) deficiency, and soil compaction. To explore the molecular mechanisms and metabolic basis behind the peanut response to N deficiency and soil compaction stresses, transcriptome and metabolome analyses of peanut root were carried out. The results showed that N deficiency and soil compaction stresses clearly impaired the growth and development of peanut's aboveground and underground parts, as well as its root nodulation. A total of 18645 differentially expressed genes (DEGs) and 875 known differentially accumulated metabolites (DAMs) were identified in peanut root under differing soil compaction and N conditions. The transcriptome analysis revealed that DEGs related to N deficiency were mainly enriched in "amino acid metabolism", "starch and sucrose metabolism", and "TCA cycle" pathways, while DEGs related to soil compaction were mainly enriched in "oxidoreductase activity", "lipids metabolism", and "isoflavonoid biosynthesis" pathways. The metabolome analysis also showed significant differences in the accumulation of metabolisms in these pathways under different stress conditions. Then the involvement of genes and metabolites in pathways of "amino acid metabolism", "TCA cycle", "lipids metabolism", and "isoflavonoid biosynthesis" under different soil compaction and N deficiency stresses were well discussed. This integrated transcriptome and metabolome analysis study enhances our mechanistic knowledge of how peanut plants respond to N deficiency and soil compaction stresses. Moreover, it provides new leads to further investigate candidate functional genes and metabolic pathways for use in improving the adaptability of peanut to abiotic stress and accelerating its breeding process of new stress-resistant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Pu Shen
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
6
|
Latt MM, Park BB. Tree Species Composition and Forest Community Types along Environmental Gradients in Htamanthi Wildlife Sanctuary, Myanmar: Implications for Action Prioritization in Conservation. PLANTS 2022; 11:plants11162180. [PMID: 36015484 PMCID: PMC9414654 DOI: 10.3390/plants11162180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
The identification of forest community types is essential for prioritizing choices and targets in species and community conservation purposes amid climate change impacts on forest community dynamics. Here, we determined the tree species composition, species diversity, and the forest community types across contrasting topographic and edaphic conditions in Htamanthi Wildlife Sanctuary (HWS), Myanmar. All tree species with diameter at breast height (DBH) ≥10 cm were recorded in 66 plots (625 m2), from which the species diversity, density, frequency, dominance, and importance value (IV) of each tree species were measured. The soil hardness (Hd), bulk density (BD), moisture content (MC), organic matter content (OM), texture, pH, total N, and available P, K, Ca, Na, and Mg concentrations were also analyzed. The elevation (ELV) and slope (SLP) were also measured as the topographic factors. Cluster analysis resulted in five distinct forest communities and the soil Ca, Mg, clay proportion, soil hardness, and elevation were the major influencing factors. The species diversity in HWS ranged from low to very high relative values, with 209 tree species belonging to 119 genera and 55 families. Identification of these community types and understanding the diversity levels and major factors influencing the community structure may play a key role in the planning, prioritization, and implementation of species and community conservation strategies amid the unpredictable impacts of climate change on forest community dynamics.
Collapse
Affiliation(s)
- Myo Min Latt
- Department of Environment and Forest Resources, Chungnam National University, Daejeon 34134, Korea
- Department of Natural Resources Management, University of Forestry and Environmental Science, Yezin 15013, Myanmar
| | - Byung Bae Park
- Department of Environment and Forest Resources, Chungnam National University, Daejeon 34134, Korea
- Correspondence:
| |
Collapse
|
7
|
Bello Bello E, Rico Cambron TY, Ortiz Ramírez LA, Rellán Álvarez R, Herrera-Estrella L. ROOT PENETRATION INDEX 3, a major quantitative trait locus associated with root system penetrability in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4716-4732. [PMID: 35512438 PMCID: PMC9366324 DOI: 10.1093/jxb/erac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/03/2022] [Indexed: 05/07/2023]
Abstract
Soil mechanical impedance precludes root penetration, confining root system development to shallow soil horizons where mobile nutrients are scarce. Using a two-phase-agar system, we characterized Arabidopsis responses to low and high mechanical impedance at three root penetration stages. We found that seedlings whose roots fail to penetrate agar barriers show a significant reduction in leaf area, root length, and elongation zone and an increment in root diameter, while those capable of penetrating show only minor morphological effects. Analyses using different auxin-responsive reporter lines, exogenous auxins, and inhibitor treatments suggest that auxin responsiveness and PIN-mediated auxin distribution play an important role in regulating root responses to mechanical impedance. The assessment of 21 Arabidopsis accessions revealed that primary root penetrability varies widely among accessions. To search for quantitative trait loci (QTLs) associated to root system penetrability, we evaluated a recombinant inbred population derived from Landsberg erecta (Ler-0, with a high primary root penetrability) and Shahdara (Sha, with a low primary root penetrability) accessions. QTL analysis revealed a major-effect QTL localized in chromosome 3, ROOT PENETRATION INDEX 3 (q-RPI3), which accounted for 29.98% (logarithm of odds=8.82) of the total phenotypic variation. Employing an introgression line (IL-321) with a homozygous q-RPI3 region from Sha in the Ler-0 genetic background, we demonstrated that q-RPI3 plays a crucial role in root penetrability. This multiscale study reveals new insights into root plasticity during the penetration process in hard agar layers, natural variation, and genetic architecture behind primary root penetrability in Arabidopsis.
Collapse
Affiliation(s)
- Elohim Bello Bello
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Thelma Y Rico Cambron
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Lesly Abril Ortiz Ramírez
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Rubén Rellán Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
8
|
Effects of Hypoxia Stress on Growth, Root Respiration, and Metabolism of Phyllostachys praecox. Life (Basel) 2022; 12:life12060808. [PMID: 35743839 PMCID: PMC9224615 DOI: 10.3390/life12060808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia affects plant growth, hormone content, various enzyme activities, cell structure, peroxide production, and metabolic level, therefore reducing crop yield. This study assessed the physiological, biochemical, and metabolic characteristics of Phyllostachys praecox. Results revealed that hypoxia stress treatment significantly inhibited plant growth. Leaf chlorophyll contents was initially improved and then reduced with plant growth time. Under hypoxia stress, the root activity significantly was reduced, leading to the decrease in the nutrient absorption and transport. Yet, with low oxygen concentration, the contents of ethanol, acetaldehyde, and lactic acid were improved. With hypoxia stress, phospholipids and amino acids were the main metabolites of Phyllostachys praecox. Glycosphospholipid metabolism is the key pathway in responding to hypoxia stress significantly (p < 0.05), and lysophosphatidlycholine (lysoPC) and phosphatidylcholines (PC) in the metabolites of this metabolic pathway were significantly enhanced. Our study reveals the mechanism of Phyllostachys praecox cell membrane responding to hypoxia stress based on molecular level. This is conducive to finding targeted solutions to improve the productivity of Phyllostachys praecox to better optimize a mulching approach in the bamboo forest.
Collapse
|
9
|
Zuo YW, Zhang JH, Ning DH, Zeng YL, Li WQ, Xia CY, Zhang H, Deng HP. Comparative Analyses of Rhizosphere Bacteria Along an Elevational Gradient of Thuja sutchuenensis. Front Microbiol 2022; 13:881921. [PMID: 35591985 PMCID: PMC9111514 DOI: 10.3389/fmicb.2022.881921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Thuja sutchuenensis Franch. is an endangered species in southwestern China, primarily distributed in 800-2,100 m of inaccessible mountainous areas. Rhizosphere soil physicochemical properties and bacterial communities play an essential role in managing plant growth and survival. Nonetheless, the study investigating rhizosphere soil properties and bacterial communities of T. sutchuenensis is limited. The present study investigated soil properties, including soil pH, organic matter, water content, nitrogen, phosphorus, and potassium contents, and bacterial communities in nearly all extant T. sutchuenensis populations at five elevational gradients. Our results demonstrated that the increase in elevation decreased rhizosphere and bulk soil phosphorus content but increased potassium content. In addition, the elevational gradient was the dominant driver for the community composition differentiation of soil bacterial community. Proteobacteria and Acidobacteria were the dominant bacterial phyla distributed in the rhizosphere and bulk soils. Co-occurrence network analysis identified key genera, including Bradyrhizobium, Acidicapsa, Catenulispora, and Singulisphaera, that displayed densely connected interactions with many genera in the rhizosphere soil. The dominant KEGG functional pathways of the rhizosphere bacteria included ABC transporters, butanoate metabolism, and methane metabolism. Further correlation analysis found that soil phosphorus and potassium were the dominant drivers for the diversity of soil bacteria, which were distinctively contributed to the phylum of Planctomycetes and the genera of Blastopirellula, Planctomycetes, and Singulisphaera. Collectively, this comprehensive study generated multi-dimensional perspectives for understanding the soil bacterial community structures of T. sutchuenensis, and provided valuable findings for species conservation at large-scale views.
Collapse
Affiliation(s)
- You-wei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Jia-hui Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Deng-hao Ning
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Yu-lian Zeng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Wen-qiao Li
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Chang-ying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Hong-ping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
- Chongqing Academy of Science and Technology, Low Carbon and Ecological Environment Protection Research Center, Chongqing, China
| |
Collapse
|
10
|
Cerdà A, Novara A, Moradi E. Long-term non-sustainable soil erosion rates and soil compaction in drip-irrigated citrus plantation in Eastern Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147549. [PMID: 33992950 DOI: 10.1016/j.scitotenv.2021.147549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Agriculture is known to commonly cause soil degradation. In the Mediterranean, soil erosion is widespread due to the millennia-old farming, and new drip-irrigated plantations on slopes, such as the citrus ones, accelerate the process of soil degradation. Until now, the published data about soil erosion in citrus orchards is based on short-term measurements. Long-term soil erosion measurements are needed to assess the sustainability of drip-irrigated citrus production and to design new strategies to control high soil erosion rates. The objective of this study is to assess long-term soil erosion rates in citrus plantations and report the changes in soil bulk density as indicators of land degradation. We applied ISUM (Improved Stock-Unearthing Method) to 67 paired trees in an inter-row of 134 m (802 m2 plot) with 4080 measurements to determine the changes in soil topography from the plantation (2007) till 2020. Soil core samples (469) were collected (0-6 cm depth) to determine the soil bulk density at the time of plantation (2007) and in 2020. The results demonstrate an increase in soil bulk density from 1.05 g cm-3 to 1.33 g cm-3. Changes in soil bulk density were higher in the center of the row as a result of compaction due to passing machinery. Soil erosion was calculated to be 180 Mg ha-1 y-1 due to a mean soil lowering of 1.5 cm yearly. The highest soil losses were found in the center of the inter-row and the lowest underneath the trees. The extreme soil erosion rates measured in new drip-irrigated citrus plantations are due to soil lowering in the center of the inter-row and in the lower inter-row position where the incision reached 80 cm in 13 years. The whole field showed a lowering of the soil topography due to extreme soil erosion and no net sedimentation within the plantation. The results show the urgent need for soil erosion control strategies to avoid soil degradation, loss of crop production, and damages to off-site infrastructures.
Collapse
Affiliation(s)
- Artemi Cerdà
- Soil Erosion and Degradation Research Group, Department of Geography, Valencia University, Blasco Ibàñez, 28, 46010 Valencia, Spain.
| | - Agata Novara
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Ehsan Moradi
- Department of Reclamation of Arid and Mountainous Regions, University of Tehran, Karaj 31585-3314, Iran.
| |
Collapse
|