1
|
Bekchanov D, Mukhamediev M, Yarmanov S, Lieberzeit P, Mujahid A. Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohydr Polym 2024; 323:121397. [PMID: 37940289 DOI: 10.1016/j.carbpol.2023.121397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
The present study provides an overview of scientific developments made in the last decade in the field of green adsorbents focusing on the modifications in natural polymers and their applications such as, wastewater treatment, and ion exchange. For this purpose, an introduction to the various methods of modifying natural polymers is first given, and then the properties, application, and future priorities of green adsorbents are also discussed. Methods of modification of natural polymers under homogeneous and heterogeneous conditions using modifiers with different properties are also described. Various methods for modifying natural polymers and the use of the obtained green adsorbents are reviewed. A comparison of the sorption properties of green adsorbents based on natural polymers and other adsorbents used in industry has also been carried out. With the participation of green adsorbents based on natural polymers, the properties of treated wastewaters having toxic metal ions, organic dyes, petroleum products, and other harmful compounds was analyzed. Future perspectives on green adsorbents based on natural polymers are as also highlighted.
Collapse
Affiliation(s)
- Davronbek Bekchanov
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Mukhtar Mukhamediev
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | | | - Peter Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Adnan Mujahid
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
2
|
Meghana MC, Nandhini C, Benny L, George L, Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym Bull (Berl) 2022; 80:1-50. [PMID: 36530484 PMCID: PMC9735231 DOI: 10.1007/s00289-022-04565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.
Collapse
Affiliation(s)
- M. C. Meghana
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - C. Nandhini
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Libina Benny
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| |
Collapse
|
3
|
Bognár S, Putnik P, Maksimović I, Velebit B, Putnik-Delić M, Šojić Merkulov D. Sustainable Removal of Tolperisone from Waters by Application of Photocatalysis, Nanotechnology, and Chemometrics: Quantification, Environmental Toxicity, and Degradation Optimization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4199. [PMID: 36500821 PMCID: PMC9740293 DOI: 10.3390/nano12234199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental pollution is an emerging global issue. Heterogenous photocatalytic degradation, which belongs to the advanced oxidation processes, is a promising sustainable technique for the removal of harmful pollutants (e.g., pharmaceuticals) from natural resources (surface and underground waters), as well as wastewaters. In our study, we examined the efficiency of photocatalytic degradation (with TiO2 and ZnO as photocatalysts) of tolperisone hydrochloride (TLP) and the effect of TLP and its degradation intermediates on germination, photosynthetic capacity, and biomass production of wheat. According to the UFLC-DAD and LC-ESI-MS results, we found that the complete degradation of TLP can be reached after 60.83 min of UV irradiation using TiO2 as a photocatalyst. Furthermore, we determined that germination, biomass production, and chlorophyll b (Chl b) were not related to the percentage of TLP after irradiation. Chlorophyll a (Chl a) (r = -0.61, p ≤ 0.05), Chl a+b (r = -0.56, p ≤ 0.05), and carotenoid (car) (r = -0.57, p ≤ 0.05) were strongly inversely (negatively) correlated with TLP, while Chl a+b/car (r = 0.36, p ≤ 0.05) was moderately (positively) related.
Collapse
Affiliation(s)
- Szabolcs Bognár
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Ivana Maksimović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Branko Velebit
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia
| | - Marina Putnik-Delić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Daniela Šojić Merkulov
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Aravind J, Kamaraj M, Govarthanan M. Polymeric biomolecules based nanomaterials: Production strategies and pollutant mitigation as an emerging tool for environmental application. CHEMOSPHERE 2022; 307:136008. [PMID: 35985386 DOI: 10.1016/j.chemosphere.2022.136008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The ever-exploding global population coupled with its anthropogenic impact has imparted unparalleled detrimental effects on the environment and mitigating them has emerged as the prime challenge and focus of the current century. The niche of nanotechnology empowered by composites of biopolymers in the handling of xenobiotics and environmental clean-up has an unlimited scope. The appositeness of biopolymer-nanoparticles (Bp-NPs) for environmental contaminant mitigation has received unique consideration due to its exclusive combination of physicochemical characteristics and other attributes. The current review furnishes exhaustive scrutiny of the current accomplishments in the development of Bp-NPs and biopolymer nanomaterials (Bp-NMs) from various polymeric biomolecules. Special attention was provided for polymeric biomolecules such as cellulose, lignin, starch, chitin, and chitosan, whereas limited consideration on gelatin, alginate, and gum for the development of Bp-NPs and Bp-NMs; together with coverage of literature. Promising applications of tailored biopolymer hybrids such as Bp-NPs and Bp-NMs on environmentally hazardous xenobiotics handling and pollution management are discussed as to their notable environmental applications.
Collapse
Affiliation(s)
- P Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, TamilNadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
5
|
Ihsanullah I, Bilal M, Jamal A. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents. CHEM REC 2022; 22:e202100312. [PMID: 35102677 DOI: 10.1002/tcr.202100312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Indexed: 12/24/2022]
Abstract
Starch-based adsorbents have demonstrated excellent potential for the removal of various noxious dyes from wastewater. This review critically evaluates the recent progress in applications of starch-based adsorbents for the removal of dyes from water. The synthesis methods of starch-based composites and their effects on physicochemical characteristics of produced adsorbents are discussed. The removal of various dyes by starch-based adsorbents are described in detail, with emphasis on the effect of key parameters, adsorption mechanism and their reusability potential. The key challenges related to the synthesis and applications of starch-based adsorbents in water purification are highlighted. Based on the research gaps, recommendations for future research are made. The evaluation of starch-based adsorbents would contribute to the development of sustainable water treatment options in near future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd, University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Arshad Jamal
- Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Khan MJ, Singh N, Mishra S, Ahirwar A, Bast F, Varjani S, Schoefs B, Marchand J, Rajendran K, Banu JR, Saratale GD, Saratale RG, Vinayak V. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: Updates, challenges and innovations. CHEMOSPHERE 2022; 288:132589. [PMID: 34678344 DOI: 10.1016/j.chemosphere.2021.132589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Nikhil Singh
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Felix Bast
- Department of Botany, Central University of Punjab, Ghudda-VPO, Bathinda, 151401, Punjab, 151001, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamilnadu, Thiruvar, 610005, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
7
|
Zhang Y, He S, Zhang Y, Feng Y, Pan Z, Zhang M. Facile synthesis of PPy@MoS2 hollow microtubes for removal of cationic and anionic dyes in water treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes (Basel) 2021. [DOI: 10.3390/pr9040719] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Naturally occurring substances or polymeric biomolecules synthesized by living organisms during their entire life cycle are commonly defined as biopolymers. Different classifications of biopolymers have been proposed, focusing on their monomeric units, thus allowing them to be distinguished into three different classes with a huge diversity of secondary structures. Due to their ability to be easily manipulated and modified, their versatility, and their sustainability, biopolymers have been proposed in different fields of interest, starting from food, pharmaceutical, and biomedical industries, (i.e., as excipients, gelling agents, stabilizers, or thickeners). Furthermore, due to their sustainable and renewable features, their biodegradability, and their non-toxicity, biopolymers have also been proposed in wastewater treatment, in combination with different reinforcing materials (natural fibers, inorganic micro- or nano-sized fillers, antioxidants, and pigments) toward the development of novel composites with improved properties. On the other hand, the improper or illegal emission of untreated industrial, agricultural, and household wastewater containing a variety of organic and inorganic pollutants represents a great risk to aquatic systems, with a negative impact due to their high toxicity. Among the remediation techniques, adsorption is widely used and documented for its efficiency, intrinsic simplicity, and low cost. Biopolymers represent promising and challenging adsorbents for aquatic environments’ decontamination from organic and inorganic pollutants, allowing for protection of the environment and living organisms. This review summarizes the results obtained in recent years from the sustainable removal of contaminants by biopolymers, trying to identify open questions and future perspectives to overcome the present gaps and limitations.
Collapse
|
9
|
Song X, Qiu X, Huang X, Tu Y, Zhao Q, Sun R, Zhang L. Waxy rice amylopectin towards stretchable elastic conductive hydrogel for human motion detection. NEW J CHEM 2021. [DOI: 10.1039/d0nj05258b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynamic hydrogen-bonding interaction brings waxy rice amylopectin element into polyacrylamide network to elicit a stretchable elastic composite hydrogel for sensing application.
Collapse
Affiliation(s)
- Xiaodong Song
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Xiaxin Qiu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Xiaowen Huang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Yaqing Tu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| |
Collapse
|
10
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
11
|
Khaled B, Nassira Z, Imene H. Eco-friendly synthesis of self-regenerative low-cost biosorbent by the incorporation of CuO: a photocatalyst sensitive to visible light irradiation for azo dye removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31074-31091. [PMID: 32524399 DOI: 10.1007/s11356-020-09364-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Acid pretreated biomass Lemna minor (BM-H3PO4) was used as support for CuO nanoparticles loading, to investigate the dye biosorption capacity and the photocatalytic performance under artificial visible light. The surface morphology, crystal structure, elemental composition, and the bandgap of modified biomass have been determined using FE-SEM, XRD, EDX, XPS, FTIR, and UV-DR analysis. The results showed that NH2 and P-O functional groups of (BM-H3PO4) can attract the copper ions (Cu2+), which can facilitate the loading of CuO nanoparticles hence, smaller nanoparticles with an average diameter of 21 nm was obtained. It was also found that when the CuO was incorporated in BM-H3PO4 in a proper mass ratio of 0.4, the biosorption efficiency was enhanced to 3 times compared with BM-H3PO4 and reached a maximum of 91%, at a dye concentration of 20 mg/L, solution pH equal to 5, and an ambient temperature of 25 °C. Furthermore, CuO-modified BM-H3PO4 exhibits a better photocatalytic activity than pure CuO in the presence of H2O2 and visible light irradiation, where the dye was completely removed and mineralized after 240 min, evidenced by COD measurement. The photocatalytic regeneration also shows that the biosorption efficiency was maintained at 91% over 3 cycles, indicating the significant self-regenerative capacity of the biosorbent.
Collapse
Affiliation(s)
- Benabbas Khaled
- Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, 23000, Annaba, Algeria.
| | - Zabat Nassira
- Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, 23000, Annaba, Algeria
| | - Hocini Imene
- Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, 23000, Annaba, Algeria
| |
Collapse
|
12
|
Facile synthesis of TiO2@MoS2 hollow microtubes for removal of organic pollutants in water treatment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Ounkaew A, Kasemsiri P, Jetsrisuparb K, Uyama H, Hsu YI, Boonmars T, Artchayasawat A, Knijnenburg JTN, Chindaprasirt P. Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydr Polym 2020; 248:116767. [PMID: 32919563 DOI: 10.1016/j.carbpol.2020.116767] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022]
Abstract
Treatment of infections using wound dressing integrated with multiple functions such as antibacterial activity, non-toxicity, and good mechanical properties has attracted much attention. In this study, carboxymethyl starch/polyvinyl alcohol/citric acid (CMS/PVA/CA) hydrogels containing silver nanoparticles (AgNPs) were prepared. The CMS, PVA and CA were used as polymer matrix and bio-based reducing agents for green synthesis of AgNPs. Silver nitrate (AgNO3) concentrations of 50, 100, and 150 mM were used to obtain nanocomposite hydrogels containing different AgNPs concentrations (AgNPs-50, AgNPs-100 and AgNPs-150, respectively). The minimum inhibitory concentration against E. coli and S. aureus was observed in CMS/PVA/CA hydrogels containing AgNPs-50. Uniform dispersion of AgNPs-100 in the hydrogel provided the highest storage modulus at 56.4 kPa. AgNPs-loaded hydrogels showed low toxicity to human fibroblast cells indicating good biocompatibility. Incorporation of AgNPs demonstrated an enhancement in antibacterial properties and overall mechanical properties, which makes these nanocomposite hydrogels attractive as novel wound dressing materials.
Collapse
Affiliation(s)
- Artjima Ounkaew
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Kaewta Jetsrisuparb
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atchara Artchayasawat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jesper T N Knijnenburg
- Biodiversity and Environmental Management Division, International College, Khon Kaen University, Khon Kaen, Thailand
| | - Prinya Chindaprasirt
- Sustainable Infrastructure Research and Development Center and Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand; the Royal Society of Thailand, Thailand
| |
Collapse
|
14
|
Trisopon K, Kittipongpatana N, Kittipongpatana OS. A Spray-Dried, Co-Processed Rice Starch as a Multifunctional Excipient for Direct Compression. Pharmaceutics 2020; 12:pharmaceutics12060518. [PMID: 32517241 PMCID: PMC7355677 DOI: 10.3390/pharmaceutics12060518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 11/20/2022] Open
Abstract
A new co-processed, rice starch-based excipient (CS) was developed via a spray-drying technique. Native rice starch (RS) was suspended in aqueous solutions of 10%–15% cross-linked carboxymethyl rice starch (CCMS) and 0.5%–6.75% silicon dioxide (in the form of sodium silicate), before spray drying. The resulting CSs were obtained as spherical agglomerates, with improved flowability. The compressibility study revealed an improved plastic deformation profile of RS, leading to better compaction and tensile strength. The presence of CCMS also ensured a rapid disintegration of the compressed tablets. CS-CCMS:SiO2 (10:2.7), prepared with 10% CCMS, 2.7% silicon dioxide, and 40% solid content, was found to exhibit the best characteristics. Compared to the two commercial DC excipients, Prosolv® and Tablettose®, the flow property of CS-CCMS:SiO2 (10:2.7) was not significantly different, while the tensile strength was 23%: lower than that of Prosolv® but 4 times higher than that of Tablettose® at 196 MPa compression force. The disintegration time of CS-CCMS:SiO2 (10:2.7) tablet (28 s) was practically identical to that of Tablettose® tablet (26 s) and far superior to that of Prosolv® tablet (>30 min). These results show that CSs could potentially be employed as a multifunctional excipient for the manufacturing of commercial tablets by DC.
Collapse
Affiliation(s)
- Karnkamol Trisopon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (N.K.)
| | - Nisit Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (N.K.)
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ornanong Suwannapakul Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (N.K.)
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-87-301-0978
| |
Collapse
|
15
|
Musarurwa H, Tavengwa NT. Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydr Polym 2020; 237:116142. [DOI: 10.1016/j.carbpol.2020.116142] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022]
|