1
|
Han L, Gu H, Lu W, Li H, Peng WX, Ling Ma N, Lam SS, Sonne C. Progress in phytoremediation of chromium from the environment. CHEMOSPHERE 2023; 344:140307. [PMID: 37769918 DOI: 10.1016/j.chemosphere.2023.140307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
As chromium (Cr) in ecosystems affects human health through food chain exposure, phytoremediation is an environmentally friendly and efficient way to reduce chromium pollution in the environment. Here, we review the mechanism of absorption, translocation, storage, detoxification, and regulation of Cr in plants. The Cr(VI) form is more soluble, mobile, and toxic than Cr(III), reflecting how various valence states of Cr affect environmental risk characteristics, physicochemical properties, toxicity, and plant uptake. Plant root's response to Cr exposure leads to reactive oxygen species (ROS) generation and apoptosis. Cell wall immobilization, vacuole compartmentation, interaction of defense proteins and organic ligand with Cr, and removal of reactive oxygen species by antioxidants continue plant life. In addition, the combined application of microorganisms, genetic engineering, and the addition of organic acids, nanoparticles, fertilization, soil amendments, and other metals could accelerate the phytoremediation process. This review provides efficient methods to investigate and understand the complex changes of Cr metabolism in plants. Preferably, fast-growing, abundantly available biomass species should be modified to mitigate Cr pollution in the environment as these green and efficient remediation technologies are necessary for the protection of soil and water ecology.
Collapse
Affiliation(s)
- Lingzhuo Han
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjie Lu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wan-Xi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
2
|
|
3
|
Mishra D, Kumar S, Mishra BN. An Overview of Morpho-Physiological, Biochemical, and Molecular Responses of Sorghum Towards Heavy Metal Stress. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:155-177. [PMID: 33866418 DOI: 10.1007/398_2020_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy metal (HM) contamination is a serious global environmental crisis. Over the past decade, industrial effluents, modern agricultural practices, and other anthropogenic activities have significantly depleted the soil environment. In plants, metal toxicity leads to compromised growth, development, productivity, and yield. Also, HMs negatively affect human health due to food chain contamination. Thus, it is imperative to reduce metal accumulation and toxicity. In nature, certain plant species exhibit an inherent capacity of amassing large amounts of HMs with remarkable tolerance. These plants with unique characteristics can be employed for the remediation of contaminated soil and water. Among different plant species, Sorghum bicolor has the potential of accumulating huge amounts of HMs, thus could be regarded as a hyperaccumulator. This means that it is a metal tolerant, high biomass producing energy crop, and thus can be utilized for phytoremediation. However, high concentrations of HMs hamper plant height, root hair density, shoot biomass, number of leaves, chlorophyll, carotenoid, and carbohydrate content. Thus, understanding the response of Sorghum towards different HMs holds considerable importance. Considering this, we have uncovered the basic information about the metal uptake, translocation, and accumulation in Sorghum. Plants respond to different HMs via sensing, signaling, and modulations in physico-chemical processes. Therefore, in this review, a glimpse of HM toxicity and the response of Sorghum at the morphological, physiological, biochemical, and molecular levels has been provided. The review highlights the future research needs and emphasizes the extensive molecular dissection of Sorghum to explore its genetic adaptability towards different abiotic stresses that can be exploited to develop resilient crop varieties.
Collapse
Affiliation(s)
- Dewanshi Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Smita Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India.
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Radziemska M, Bęś A, Gusiatin ZM, Sikorski Ł, Brtnicky M, Majewski G, Liniauskienė E, Pecina V, Datta R, Bilgin A, Mazur Z. Successful Outcome of Phytostabilization in Cr(VI) Contaminated Soils Amended with Alkalizing Additives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6073. [PMID: 32825498 PMCID: PMC7503857 DOI: 10.3390/ijerph17176073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022]
Abstract
This study analysed the effect of three alkalizing soil amendments (limestone, dolomite chalcedonite) on aided phytostabilization with Festuca rubra L. depending on the hexavalent chromium (Cr(VI)) level in contaminated soil. Four different levels of Cr(VI) were added to the soil (0, 50, 100 and 150 mg/kg). The Cr contents in the plant roots and above-ground parts and the soil (total and extracted Cr by 0.01 M CaCl2) were determined with flame atomic absorption spectrometry. The phytotoxicity of the soil was also determined. Soil amended with chalcedonite significantly increased F. rubra biomass. Chalcedonite and limestone favored a considerable accumulation of Cr in the roots. The application of dolomite and limestone to soil contaminated with Cr(VI) contributed to a significant increase in pH values and was found to be the most effective in reducing total Cr and CaCl2-extracted Cr contents from the soil. F. rubra in combination with a chalcedonite amendment appears to be a promising solution for phytostabilization of Cr(VI)-contaminated areas. The use of this model can contribute to reducing human exposure to Cr(VI) and its associated health risks.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Agnieszka Bęś
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (Ł.S.); (Z.M.)
| | - Zygmunt M. Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10 719 Olsztyn, Poland;
| | - Łukasz Sikorski
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (Ł.S.); (Z.M.)
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic; (M.B.); (V.P.); (R.D.)
- Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Faculty of Chemistry, Purkynova 118, 62100 Brno, Czech Republic
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Ernesta Liniauskienė
- Kaunas Forestry and Environmental Engineering, University of Applied Sciences, Liepu str. 1, Girionys, LT-53101 Kaunas reg., Lithuania;
| | - Václav Pecina
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic; (M.B.); (V.P.); (R.D.)
- Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Faculty of Chemistry, Purkynova 118, 62100 Brno, Czech Republic
| | - Rahul Datta
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic; (M.B.); (V.P.); (R.D.)
| | - Ayla Bilgin
- Faculty of Engineering, Artvin Coruh University, Seyitler Campus, 08000 Artvin, Turkey;
| | - Zbigniew Mazur
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (Ł.S.); (Z.M.)
| |
Collapse
|