1
|
Hu F, Wang P, Li Y, Ling J, Ruan Y, Yu J, Zhang L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117211. [PMID: 37778604 DOI: 10.1016/j.envres.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The development of the chemical industry has led to a boom in daily consumption and convenience, but has also led to the release of large amounts of organic pollutants, such as petroleum hydrocarbons, plastics, pesticides, and dyes. These pollutants are often recalcitrant to degradation in the environment, whereby the most problematic compounds may even lead to carcinogenesis, teratogenesis and mutagenesis in animals and humans after accumulation in the food chain. Microbial degradation of organic pollutants is efficient and environmentally friendly, which is why it is considered an ideal method. Numerous studies have shown that Pseudomonas aeruginosa is a powerful platform for the remediation of environmental pollution with organic chemicals due to its diverse metabolic networks and its ability to secrete biosurfactants to make hydrophobic substrates more bioavailable, thereby facilitating degradation. In this paper, the mechanisms and methods of the bioremediation of environmental organic pollutants (EOPs) by P. aeruginosa are reviewed. The challenges of current studies are highlighted, and new strategies for future research are prospected. Metabolic pathways and critical enzymes must be further deciphered, which is significant for the construction of a bioremediation platform based on this powerful organism.
Collapse
Affiliation(s)
- Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Panlin Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiahuan Ling
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
2
|
Ivanic FM, Butler M, Borón CI, Candal RJ. Assessing the transformation products and fate of Oxytetracycline by simulated aerobic degradation tests. CHEMOSPHERE 2023; 343:140284. [PMID: 37758075 DOI: 10.1016/j.chemosphere.2023.140284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Oxytetracycline (OTC) is a widely used broad-spectrum antibiotic, whose presence in water and sediments was reported in various regions of the world. The effects of OTC and other tetracyclines on the environment have been intensively studied although many of their transformation products (TPs) formed in the environment and their impact have not been yet fully characterized. Abiotic and biotic degradation tests under aerobic conditions at two pH values were carried out using OTC in artificial water/sediment systems to assess the effect of these variables on the environmental fate of the pollutant. HPLC-MSn was employed to detect and identify the main degradation products and pathways. Several transformations involved in the process were identified including alcohol oxidation, decarbonylation and hydroxylation. Differences in TPs and kinetics were found among degradation conditions, remarking a faster degradation of both OTC and TPs in the presence of microorganisms and at lower pH values. In summary, a total of 44 TPs were detected and structures were proposed for 20 of them, none of them having been previously reported. Furthermore, OTC degradation generated 24 TPs which remained in either solution or sediment, although none of them displayed higher algae toxicity than OTC. These results might be useful for planning future remediation and monitoring strategies.
Collapse
Affiliation(s)
- Federico M Ivanic
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
| | - Carlos I Borón
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Roberto J Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
3
|
Khannyra S, Gil MLA, Addou M, Mosquera MJ. Dye decomposition and air de-pollution performance of TiO 2/SiO 2 and N-TiO 2/SiO 2 photocatalysts coated on Portland cement mortar substates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63112-63125. [PMID: 35459995 PMCID: PMC9477917 DOI: 10.1007/s11356-022-20228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, the newly synthesized TiO2 and N doped TiO2 clusters were added to silica sol to synthesize N-TiO2/SiO2 composites via the sol-gel method. Afterwards, the prepared sols were applied by brushing on portland cement. Doping with nitrogen significantly increased the absorption of TiO2 towards the visible region, thus, increasing the photocatalytic activity. SEM characterization of the treated samples showed that the clusters were distributed in form of aggregates on the samples' surface. The self-cleaning and air de-polluting performances were assessed through methylene blue degradation and the oxidation of nitrogen oxide, resulting in methylene blue (MB) removal of 85% and 78% after 60 min of irradiation for SN10TiO2 and STiO2, respectively. Regarding air de-pollution performance, the newly synthesized photocatalysts showed the ability of NOx reduction. However, their efficiency was somewhat lower, in which 23.81% of NO has been oxidized by the sample SN10TiO2, while SP25 showed a total NO conversion of 38.98%. The powdered xerogels of the newly synthesized nanoparticles revealed high photocatalytic efficiency concerning NO oxidation, resulting in a higher performance compared to those obtained by the xerogel containing P25.
Collapse
Affiliation(s)
- Souad Khannyra
- TEP-243 Nanomaterials Group, Department of Physical-Chemistry, Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Spain
- Materials and Valorization of Natural Resource Laboratory, FST Tangier, Abdelmalek Essaadi University, Tétouan, Morocco
| | - Maria Luisa Almoraima Gil
- TEP-243 Nanomaterials Group, Department of Physical-Chemistry, Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Spain.
| | - Mohammed Addou
- Materials and Valorization of Natural Resource Laboratory, FST Tangier, Abdelmalek Essaadi University, Tétouan, Morocco
| | - Maria Jesus Mosquera
- TEP-243 Nanomaterials Group, Department of Physical-Chemistry, Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Spain
| |
Collapse
|
4
|
Zuo W, Zhang L, Zhang Z, Tang S, Sun Y, Huang H, Yu Y. Degradation of organic pollutants by intimately coupling photocatalytic materials with microbes: a review. Crit Rev Biotechnol 2021; 41:273-299. [PMID: 33525937 DOI: 10.1080/07388551.2020.1869689] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the rapid development of industry and agriculture, large amounts of organic pollutants have been released into the environment. Consequently, the degradation of refractory organic pollutants has become one of the toughest challenges in remediation. To solve this problem, intimate coupling of photocatalysis and biodegradation (ICPB) technology, which allows the simultaneous action of photocatalysis and biodegradation and thus integrates the advantages of photocatalytic reactions and biological treatments, was developed recently. ICPB consists mainly of porous carriers, photocatalysts, biofilms, and an illuminated reactor. Under illumination, photocatalysts on the surface of the carriers convert refractory pollutants into biodegradable products through photocatalytic reactions, after which these products are completely degraded by the biofilms cultivated in the carriers. Additionally, the biofilms are protected by the carriers from the harmful light and free radicals generated by the photocatalyst. Compared with traditional technologies, ICPB remarkably improves the degradation efficiency and reduces the cost of bioremediation. In this review, we introduce the origin and mechanisms of ICPB, discuss the development of reactors, carriers, photocatalysts, and biofilms used in ICPB, and summarize the applications of ICPB to treat organic pollutants. Finally, gaps in this research as well as future perspectives are discussed.
Collapse
Affiliation(s)
- Wenlu Zuo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uigur Autonomous Region, Urumqi, PR China
| | - Susu Tang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, PR China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|