1
|
Song B, Wang T, Wan C, Cai Y, Mao L, Ge Z, Yang N. Diversity Patterns and Drivers of Soil Bacterial and Fungal Communities in a Muddy Coastal Wetland of China. J Fungi (Basel) 2024; 10:770. [PMID: 39590689 PMCID: PMC11595316 DOI: 10.3390/jof10110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Elucidating the dynamics of soil microbial diversity in coastal wetlands is essential for understanding the changes in ecological functions within these ecosystems, particularly in the context of climate change and improper management practices. In this study, the diversity patterns and influencing factors of soil bacterial and fungal communities in a muddy coastal wetland in China were investigated using Illumina sequencing of 16S rRNA and ITS1, across wetlands dominated by different vegetations and varying proximity to the coastline. The wetlands include four plots dominated by Spartina alterniflora (SA1), four plots dominated by Suaeda glauca (SG2), additional four plots of Suaeda glauca (SG3), and four plots dominated by Phragmites australis (PA4), ranging from the nearest to the coast to those farther away. The results revealed significant differences in bacterial richness (Observed_species index) and fungal diversity (Shannon index) across different wetlands, with SG3 demonstrating the lowest bacterial Observed_species value (1430.05), while SA1 exhibited the highest fungal Shannon value (5.55) and PA4 showing the lowest fungal Shannon value (3.10). Soil bacterial and fungal community structures differed significantly across different wetlands. The contents of soil available phosphorus and total phosphorus were the main drivers for fungal Observed_species and Shannon index, respectively. Soil organic carbon, pH, and salinity were indicated as the best predictors of bacterial community structure, accounting for 28.1% of the total variation. The total nitrogen content and soil salinity contributed mostly to regulating fungal community structure across different wetlands, accounting for 19.4% of the total variation. The results of this study offer a thorough understanding of the response and variability in soil microbial diversity across the muddy coastal wetlands in China.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiwei Ge
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.S.); (T.W.); (C.W.); (Y.C.); (L.M.)
| | - Nan Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.S.); (T.W.); (C.W.); (Y.C.); (L.M.)
| |
Collapse
|
2
|
Sun J, Zhou H, Cheng H, Chen Z, Yang J, Wang Y, Jing C. Depth-Dependent Distribution of Prokaryotes in Sediments of the Manganese Crust on Nazimov Guyots of the Magellan Seamounts. MICROBIAL ECOLOGY 2023; 86:3027-3042. [PMID: 37792089 DOI: 10.1007/s00248-023-02305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
Deep ocean polymetallic nodules, rich in cobalt, nickel, and titanium which are commonly used in high-technology and biotechnology applications, are being eyed for green energy transition through deep-sea mining operations. Prokaryotic communities underneath polymetallic nodules could participate in deep-sea biogeochemical cycling, however, are not fully described. To address this gap, we collected sediment cores from Nazimov guyots, where polymetallic nodules exist, to explore the diversity and vertical distribution of prokaryotic communities. Our 16S rRNA amplicon sequencing data, quantitative PCR results, and phylogenetic beta diversity indices showed that prokaryotic diversity in the surficial layers (0-8 cm) was > 4-fold higher compared to deeper horizons (8-26 cm), while heterotrophs dominated in all sediment horizons. Proteobacteria was the most abundant taxon (32-82%) across all sediment depths, followed by Thaumarchaeota (4-37%), Firmicutes (2-18%), and Planctomycetes (1-6%). Depth was the key factor controlling prokaryotic distribution, while heavy metals (e.g., iron, copper, nickel, cobalt, zinc) can also influence significantly the downcore distribution of prokaryotic communities. Analyses of phylogenetic diversity showed that deterministic processes governing prokaryotic assembly in surficial layers, contrasting with stochastic influences in deep layers. This was further supported from the detection of a more complex prokaryotic co-occurrence network in the surficial layer which suggested more diverse prokaryotic communities existed in the surface vs. deeper sediments. This study expands current knowledge on the vertical distribution of benthic prokaryotic diversity in deep sea settings underneath polymetallic nodules, and the results reported might set a baseline for future mining decisions.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Jichao Yang
- College of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, People's Republic of China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China.
| | - Chunlei Jing
- National Deepsea Center, Ministry of Natural Resources, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Chen Y, Qiu K, Zhong Z, Zhou T. Influence of Environmental Factors on the Variability of Archaeal Communities in a Karst Wetland. Front Microbiol 2021; 12:675665. [PMID: 34539596 PMCID: PMC8448418 DOI: 10.3389/fmicb.2021.675665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Archaea are ubiquitous and play an important role in elemental cycles in Earth’s biosphere; but little is known about their diversity, distribution, abundance, and impact in karst environments. The present study investigated the effect of environmental factors on the variability of archaeal communities in the sediment of the Huixian karst wetland, the largest karst wetland in South China. Sediment cores were obtained from four sampling sites with different water depths and macrophyte inhabitants in both the winter of 2016 and the summer of 2018. The community analysis was based on PacBio sequencing and quantitative PCR of the archaeal 16S rRNA gene. The results showed that Euryarchaeota (57.4%) and Bathyarchaeota (38.7%) were dominant in all the samples. Methanogenic Methanosarcinales (25.1%) and Methanomicrobiales (13.7%), and methanotrophic archaea ANME-2d (9.0%) were the dominant Euryarchaeota; MCG-11 (16.5%), MCG-6 (9.1%), and MCG-5b (5.5%) were the dominant Bathyarchaeota. The community composition remained stable between summer and winter, and the vertical distributions of the archaeal phyla conformed to two patterns among the four sampling sites. In the winter samples, the archaeal 16S rRNA gene abundance was approximately 1.0E+10 copies/g of wet sediment and the Shannon index was 7.3±5, which were significantly higher than in the summer samples and in other karst environments. A correlation analysis showed that the moisture content and pH were the factors that mostly affected the archaeal communities. The prevalence of nitrate in the summer may be a key factor causing a significant decrease in archaeal abundance and diversity. Two features specific to karst environments, calcium-richness and weak alkalescence of the water supplies, may benefit the prevalence of bathyarchaeotal subgroups MCG-11, MCG-5b, and MCG-6. These results suggest that in karst wetlands, most of the archaea belong to clades that have significant roles in carbon turnover; their composition remains stable, but their abundance and diversity vary significantly from season to season.
Collapse
Affiliation(s)
- Ying Chen
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Kairui Qiu
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Ziyuan Zhong
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Tao Zhou
- School of Biotechnology, Guilin Medical University, Guilin, China
| |
Collapse
|
4
|
Behera P, Mohapatra M, Kim JY, Rastogi G. Benthic archaeal community structure and carbon metabolic profiling of heterotrophic microbial communities in brackish sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135709. [PMID: 31806293 DOI: 10.1016/j.scitotenv.2019.135709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Benthic Archaea play a crucial role in the biogeochemical cycles and food webs, however, their spatiotemporal distribution and environmental drivers are not well investigated in brackish sediments. The composition and abundances of benthic archaeal communities were examined from a coastal lagoon; Chilika (India) which is experiencing an intense pressure from anthropogenic and natural factors. High-throughput sequencing of 16S rRNA genes revealed that sediment (n = 96) archaeal communities were largely composed of Crenarchaeota (18.76%), Euryarchaeota (18.34%), Thaumarchaeota (13.45%), Woesearchaeota (10.05%), and Pacearchaeota (4.21%). Archaeal taxa affiliated to methanogens, sulfate-reducers, and ammonia-oxidizers were detected suggesting that carbon, sulfur, and nitrogen cycles might be prominent in benthic sediments. Salinity, total organic carbon, available nitrogen, available phosphorus, macrophyte (Phragmites karka) and inter-taxa relationships between community members and with bacterial communities played steering roles in structuring the archaeal communities. Marine sites with mesohaline-polyhaline regime were dominated by Nitrosopumilus and Thaumarchaeota. In contrast, riverine sites with oligohaline regime demonstrated a higher abundance of Thermoprotei. Macrophyte dominated zones were enriched in Methanomicrobia and Methanobacteria in their rhizosphere sediments, whereas, bulk (un-vegetated) sediments were dominated by Nitrosopumilus. Spatial patterns in archaeal communities demonstrated 'distance-decay' patterns which were correlated with changes in physicochemical factors over geographical distances. Heterotrophic microbial communities showed much higher metabolic diversity and activity in their carbon utilization profiles in rhizosphere sediments than the bulk sediments. This baseline information on benthic archaea and their environmental drivers would be useful to assess the impact of anthropogenic and natural pressures on these communities and associated biogeochemical cycles.
Collapse
Affiliation(s)
- Pratiksha Behera
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Ji Yoon Kim
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India.
| |
Collapse
|