1
|
Abbasi S, Nezafat Z, Javanshir S, Aghabarari B. Bionanocomposite MIL-100(Fe)/Cellulose as a high-performance adsorbent for the adsorption of methylene blue. Sci Rep 2024; 14:14497. [PMID: 38914657 DOI: 10.1038/s41598-024-65531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
World production of dyes is estimated at more than 800,000 t·yr-1. The purpose of this research falls within the scope of the choice of an effective, local, and inexpensive adsorbent to remove dyes from wastewater. Adsorptive elimination of dyes by commonly accessible adsorbents is inefficient. The metal-organic frameworks (MOFs) are an important class of porous materials offering exceptional properties as adsorbents by improving separation efficiency compared to existing commercial adsorbents. However, its powder form limits its applications. One way to overcome this problem is to trap them in a flexible matrix to form a hierarchical porous composite. Therefore, in this work, we prepared MIL-100 (Fe) embedded in a cellulose matrix named MIL-100(Fe)/Cell, and used it as an adsorbent of methylene blue (MB) dye. According to the BET analysis, the specific surface area of the synthesized MOF is 294 m2/g which is related to the presence of the cellulose as efficient and green support. The structure of this composite is approximately hexagonal. Adsorption was studied as a function of contact time, adsorbent mass and pollutant load (concentration), and pH, and the effect of each of them on absorption efficiency was optimized. The MIL-100(Fe)/Cell was capable of removing 98.94% of MB dye with an initial concentration of 150 mg/L within 10 min at pH = 6.5 and room temperature. The obtained maximum adsorption capacity was 384.615 mg/g. The adsorption isotherm is consistent with the Langmuir models. The mechanism of MB adsorption proceeds through п-п and electrostatic interactions.
Collapse
Affiliation(s)
- Shahla Abbasi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Chemistry Department, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Nezafat
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Chemistry Department, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Chemistry Department, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Behzad Aghabarari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, 31787-316, Iran
| |
Collapse
|
2
|
Abd El-Monaem EM, Omer AM, Hamad HA, Eltaweil AS. Construction of attapulgite decorated cetylpyridinium bromide/cellulose acetate composite beads for removal of Cr (VI) ions with emphasis on mechanistic insights. Sci Rep 2024; 14:12164. [PMID: 38806605 PMCID: PMC11133475 DOI: 10.1038/s41598-024-62378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Eco-friendly and renewable composite beads were constructed for efficient adsorptive removal of Cr (VI) ions. Attapulgite (ATP) clay decorated with cetylpyridinium bromide (CPBr) was impregnated into cellulose acetate (CA) beads, which were formulated through a simple and cost-effective solvent-exchange approach. FTIR, XRD, SEM, Zeta potential, and XPS characterization tools verified the successful formation of ATP-CPBr@CA beads. The composite beads displayed a spherical and porous shape with a positively charged surface (26.6 mV) at pH 2. In addition, higher adsorption performance was accomplished by ATP-CPBr@CA composite beads with ease of separation compared to their components. Meanwhile, equilibrium isotherms pointed out that the Langmuir model was optimal for describing the adsorption process of Cr (VI) with a maximal adsorption capacity of 302 mg/g. Moreover, the D-R isotherm model verified the physical adsorption process, while adsorption data obeyed the pseudo-second-order kinetic model. Further, XPS results hypothesized that the removal mechanism involves adsorption via electrostatic interactions, redox reaction, and co-precipitation. Interestingly, the ATP-CPBr@CA composite beads reserved tolerable adsorption characteristics with a maximum removal present exceeding 70% after reuse for seven successive cycles, proposing its feasible applicability as a reusable and easy-separable candidate for removing heavy metals from aquatic bodies.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Omer
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Hesham A Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Abdelazeem S Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Ibra, 400, Sultanate of Oman.
| |
Collapse
|
3
|
Liu Z, Cheng X. Preparation and characterization of P-type zeolite for adsorption of Cr 3+, Ni 2+, and Co 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23664-23679. [PMID: 38424243 DOI: 10.1007/s11356-024-32623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Acid-washed coal fly ash (AW-CFA) was subjected to wet grinding activation followed by hydrothermal crystallization to synthesize P zeolite (FAZ-P). The FAZ-P obtained at 120 °C for 24 h exhibited a maximum relative crystallinity of 93.15% and was employed for the adsorption of Cr3+, Ni2+, and Co2+ from aqueous solutions. The zeolitization of coal fly ash (CFA) leads to an increase in specific surface area to 44.00 m2/g, resulting in the formation of nano-sized P zeolite crystals with uniformly narrow fissures and sizes within the range of 10-30 nm. Adsorption experimental results indicate that FAZ-P exhibits maximum adsorption capacities of 49.03 mg/g for Cr3+, 22.20 mg/g for Ni2+, and 27.25 mg/g for Co2+. The adsorption equilibrium data for both mixed and single-metal ion solutions conform to the Langmuir model, with the affinity sequence for heavy metal ions being Cr3+ > Co2+ > Ni2+. The pseudo-first-order and pseudo-second-order kinetic models effectively described the adsorption behavior of Cr3+, Ni2+, and Co2+. Increasing the initial pH value of the solution significantly enhanced the adsorption capacity of the adsorbent for heavy metal ions. The removal mechanism of metal ions involves both adsorption and ion exchange processes. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic.
Collapse
Affiliation(s)
- Zhiyuan Liu
- School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan, 250061, China
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, Jinan, 250061, China
| | - Xingxing Cheng
- School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan, 250061, China.
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, Jinan, 250061, China.
| |
Collapse
|
4
|
Kutluay S, Şahin Ö, Baytar O. Enhanced benzene vapor adsorption through microwave-assisted fabrication of activated carbon from peanut shells using ZnCl 2 as an activating agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27935-27948. [PMID: 38523212 PMCID: PMC11058968 DOI: 10.1007/s11356-024-32973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Herein, microwave-assisted activated carbon (MW-AC) was fabricated from peanut shells using a ZnCl2 activator and utilized for the first time to eliminate benzene vapor as a volatile organic compound (VOC). During the MW-AC production process, which involved two steps-microwave treatment and muffle furnace heating-we investigated the effects of various factors and achieved the highest iodine number of 1250 mg/g. This was achieved under optimal operating conditions, which included a 100% impregnation ratio, CO2 as the gas in the microwave environment, a microwave power set at 500 W, a microwave duration of 10 min, an activation temperature of 500 °C and an activation time of 45 min. The structural and morphological properties of the optimized MW-AC were assessed through SEM, FTIR, and BET analysis. The dynamic adsorption process of benzene on the optimized MW-AC adsorbent, which has a significant BET surface area of 1204.90 m2/g, was designed using the Box-Behnken approach within the response surface methodology. Under optimal experimental conditions, including a contact duration of 80 min, an inlet concentration of 18 ppm, and a temperature of 26 °C, the maximum adsorption capacity reached was 568.34 mg/g. The experimental data are better described by the pseudo-second-order kinetic model, while it is concluded that the equilibrium data are better described by the Langmuir isotherm model. MW-AC exhibited a reuse efficiency of 86.54% for benzene vapor after five consecutive recycling processes. The motivation of the study highlights the high adsorption capacity and superior reuse efficiency of MW-AC adsorbent with high BET surface area against benzene pollutant. According to our results, the developed MW-AC presents itself as a promising adsorbent candidate for the treatment of VOCs in various industrial applications.
Collapse
Affiliation(s)
- Sinan Kutluay
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Faculty of Engineering, Siirt University, 56100, Siirt, Turkey.
| |
Collapse
|
5
|
Tavassoli S, Cheraghi S, Etemadifar P, Mollahosseini A, Joodaki S, Sedighi N. Optimization and characterization of silver nanoparticle-modified luffa for the adsorption of ketoprofen and reactive yellow 15 from aqueous solutions. Sci Rep 2024; 14:4398. [PMID: 38388671 PMCID: PMC10884008 DOI: 10.1038/s41598-024-54790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
In the current work, luffa was modified with silver nanoparticles to prepare LF/AgNPs adsorbent for the elimination of ketoprofen and reactive yellow 15 (RY15) from aqueous media. Various characterization techniques, including FT-IR, XRD, BET, and SEM-EDS analysis, were employed to confirm the successful modification of LF/AgNPs. Several key parameters such as contact time, adsorbent dosage, concentration, pH, and agitation technique were fine-tuned to optimize the adsorption process. Ketoprofen removal was found to be most effective in weakly acidic conditions (pH = 5), while reactive yellow 15 adsorption was enhanced in an acidic environment (pH = 2). At 298 K, the highest adsorption capacities reached 56.88 mg/g for ketoprofen and 97.76 mg/g for reactive yellow 15. In both scenarios involving the elimination of ketoprofen and RY15, the Temkin isotherm exhibits higher R2 values, specifically 0.997 for ketoprofen and 0.963 for RY15, demonstrating a strong correlation with the observed adsorption data. Additionally, the kinetics of ketoprofen adsorption were best described by the Pseudo-first order model (R2 = 0.989), whereas the Pseudo-second order model provided the most accurate fit for reactive yellow 15 adsorption (R2 = 0.997). Importantly, the LF/AgNPs adsorbent displayed consistent performance over five consecutive reuse cycles, affirming its stability and efficacy in removing both contaminants. These findings underscore the exceptional potential of LF/AgNPs as a reliable adsorbent for the removal of reactive yellow 15 and ketoprofen from aqueous solutions.
Collapse
Affiliation(s)
- Soheil Tavassoli
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Setareh Cheraghi
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Pardis Etemadifar
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Shirin Joodaki
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Niloofar Sedighi
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| |
Collapse
|
6
|
Singh K, Dixit U, Lata M. Surface activity, kinetics, thermodynamics and comparative study of adsorption of selected cationic and anionic dyes onto H 3PO 4-functionalized bagasse from aqueous stream. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105927-105943. [PMID: 37718364 DOI: 10.1007/s11356-023-29870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
The discharge of dyes into the water body creates toxicity to aquatic organisms because of their aromatic structure and difficult degradation. So, the treatment of dye-contaminated wastewater is required before releasing it. In the present study, thermally treated (600 °C) and H3PO4 (55%)-functionalized bagasse, henceforth called thermochemically activated bagasse (TCAB), was synthesized as potential adsorbent for the effective removal of selected cationic and anionic dyes from their aqueous stream. TCAB characterization was done employing FT-IR, SEM, XRD, zeta potential, BET, and PZC techniques. The comparative study shows that the relative adsorption on TCAB followed the sequence, methyl red (185 mg/g) > safranin (178 mg/g) > congo red (146 mg/g) > brilliant green (139 mg/g) > malachite green (130 mg/g) > bromocresol green (94 mg/g). The adsorption efficiency was investigated concerning the effect of change in TCAB dose (0.05-0.3 g/100 mL), initial dye concentration (20-200 mg/L), pH (4.0-10.0), ionic strength (0.1-0.5 M KCl), urea concentration (0.1-0.5 M) and temperature (25-45 °C). The representative adsorption isotherms belong to typical L-type. The time-dependent dye removal was best explained by the pseudo-second-order (PSO) kinetic model (R2 = 0.9859-0.9991), while equilibrium data were best explained by the Freundlich model (R2 = 0.9881-0.9961). Thermodynamic study showed the spontaneous (ΔG0 <0) and exothermic nature (ΔH0 <0) of the adsorption of different cationic and anionic dyes. The cyclic adsorption ability of TCAB for different dyes was checked up to three cycles (185 to 168 mg/L for MR, 178 to 165 mg/L for SF, 146 to 130 mg/L for CR, 139 to 127 mg/L for BG, 130 to 114 mg/L for MG and 94 to 80 mg/L for BCG), and no significant decrease in the adsorption capacity was noticed. So, the present study provides valuable insights into the adsorption of cationic and anionic dyes onto H3PO4-functionalized bagasse. Addressing the adsorptive aspects enhances the clarity, reliability and applicability of the study's findings and contributes to its overall scientific impact.
Collapse
Affiliation(s)
- Kaman Singh
- Surface Science Laboratory, Department of Chemistry, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India.
| | - Utkarsh Dixit
- Surface Science Laboratory, Department of Chemistry, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Madhu Lata
- Surface Science Laboratory, Department of Chemistry, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
7
|
Chen A, Guan J, Hu R, Wei X, Zhang Y, Lv L, Wang X, Zhang L, Ji L. Enhanced phosphate adsorption studies on several metal-modified aluminum sludge: preparation optimization, adsorption behavior, and mechanistic insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54628-54643. [PMID: 36881238 DOI: 10.1007/s11356-023-26212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
To solve the problems such as water eutrophication caused by excess phosphorus, the potential residual value of aluminum sludge was fully exploited and its phosphate adsorption capacity was further improved. In this study, twelve metal-modified aluminum sludge materials were prepared by co-precipitation method. Among them, Ce-WTR, La-WTR, Y-WTR, Zr-WTR, and Zn-WTR showed excellent adsorption capacity for phosphate. The adsorption performance of Ce-WTR on phosphate was twice that of the native sludge. The enhanced adsorption mechanism of metal modification on phosphate was investigated. The characterization results showed that the increase in specific surface area after metal modification was 9.64, 7.5, 7.29, 3, and 1.5 times, respectively. The adsorption of phosphate by WTR and Zn-WTR was in the accordance with Langmuir model, while the others were more following the Freundlich model (R2 > 0.991). The effects of dosage, pH, and anion on phosphate adsorption were investigated. The surface hydroxyl groups and metal (hydrogen) oxides played an important role in the adsorption process. The adsorption mechanism involves physical adsorption, electrostatic attraction, ligand exchange, and hydrogen bonding. This study provides new ideas for the resource utilization of aluminum sludge and theoretical support for preparing novel adsorbents for efficient phosphate removal.
Collapse
Affiliation(s)
- Aixia Chen
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China.
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| | - Juanjuan Guan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Ruirui Hu
- Shaanxi Huaqin Technology Industry Co., LTD, Xi'an, 710075, China
| | - Xiao Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yixuan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Luxue Lv
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Xinyuan Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Lei Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Luqian Ji
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
8
|
Sanad MMS, Gaber SE, El-Aswar EI, Farahat MM. Graphene-magnetite functionalized diatomite for efficient removal of organochlorine pesticides from aquatic environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117145. [PMID: 36586365 DOI: 10.1016/j.jenvman.2022.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
A unique composite based on graphene oxide, magnetite, and diatomite was synthetized by eco-friendly dry coating technique for the removal of four toxic organochlorine pesticides from agricultural drainage. The prepared composite was fully characterized using X-ray fluorescence (XRF), X-ray diffraction (XRD), particle size analyzer, Vibrating-sample magnetometer (VSM), magnetic susceptibility meter, zeta potential, scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS), and Brunauer-Emmett-Teller analysis (BET) techniques. The characterization results confirmed the fabrication of a discrete core/shell structured composite possess both adsorptive and magnetic nature. The surface area, pore volume and pore diameter were 23.4 m2/g, 0.0026 cm3/g, and 4.5 nm, respectively. The amenability to use the fabricated composite as an adsorbent for some organochlorine pesticides was investigated under different conditions of concentration, time, pH, and temperature. Batch adsorption experiment showed that 97% removal efficiency was observed for all the studied pesticides with adsorption capacities of 7.78 mg/g after 2 h contact time and at any pH region. The adsorption was exothermic (ΔH < 0), spontaneous (ΔG° < 0), followed pseudo 2nd order kinetics (R2 > 0.998), and fitted well to Langmuir's isotherm pattern for all pesticides (R2 > 0.98). It is assumed that organochlorine pesticides were initially physisorbed by the graphene nanoplatelets via hydrophobic and π-π interactions along with chemisorption for forming monolayer. Moreover, the pesticides molecules could diffuse in the DMG composite micropores and be trapped in the structural defects. The regeneration of the composite exhibited over 90% removal efficiency even after seven cycles. The fabricated composite was examined to remove organochlorine from a real water sample, the obtained results suggest the possibility to use this composite as an economical, effective and sustainable adsorbent for the treatment of pesticides contaminating water.
Collapse
Affiliation(s)
- Moustafa M S Sanad
- Central Metallurgical Research and Development Institute, (CMRDI) P.O. Box 87, Helwan, Cairo, Egypt
| | - Seleem E Gaber
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt.
| | - Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt
| | - Mohsen M Farahat
- Central Metallurgical Research and Development Institute, (CMRDI) P.O. Box 87, Helwan, Cairo, Egypt
| |
Collapse
|
9
|
Natesan G, Rajappan K. GO-CuO nanocomposites assimilated into CA-PES polymer membrane in adsorptive removal of organic dyes from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42658-42678. [PMID: 35821317 DOI: 10.1007/s11356-022-21821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Textile industries are one of the leading environmental pollutants by releasing harmful dye effluents. In many textile distrts, the amount of excess color in treated textile effluent that exceeds regulatory limitations is still being a major concern. The combining usage of nanomaterials and polymer material to solve these issues using various techniques. In this research, graphene oxide-copper oxide (GO-CuO) nanomaterial have been incorporated into cellulose-acetate (CA), poly-ether sulfone (PES) blend polymer by using phase inversion process to fabricate thin film nanocomposite (TFN) membrane for removal of dye pollutant. The physiochemical properties of prepared TFN materials were studied by Fourier transform infra-red spectroscopy (FT-IR), X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), thermo gravimetric analysis (TGA), and mechanical strength analysis. Dye adsorption experiments were performed with four typical water-soluble organic dyes methylene blue (MB), rhodamine blue (Rh. B), methyl orange (MO) and Congo red (CR). After reaching adsorption equilibrium, the composite membrane final removal effectiveness for MB 92.42%, Rh. B 89.39%, CR 68.39%, and MO 58.82% respectively. As a result, the fabricated TFN material proves to be an effective adsorbent material for cationic dye molecules. Also, when the fabricated material was tested with textile industry effluent sample, all physio-chemical properties exhibited a considerable decrease in concentrations when compared to the real textile effluent concentration. The treated effluents permitted for a relatively greater growth and germination index of Tropical amaranth roots than the textile effluent, this demonstrates that phytotoxicity testing was also successful. The most effective temperature, concentration and pH were found to be 273 K, 1 × 10-5 M and pH 9. The fabricated TFN membrane material (GO-CuO @ CA-PES) can be recommended for water treatment applications.
Collapse
Affiliation(s)
- Gowriboy Natesan
- Department of Chemistry SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Kalaivizhi Rajappan
- Department of Chemistry SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, 603203, India.
| |
Collapse
|
10
|
Li S, Yang F, Zhang Y, Xiang K, Chen J, Dai W, Wang J, Li Y. Carbon Nanotubes/Polydopamine/ZSM-5 Composite Soil Conditioner with Good Controlled Release and Adsorption Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9928-9939. [PMID: 35925777 DOI: 10.1021/acs.langmuir.2c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, the excessive application of fertilizers and the random discharge of waste water, waste gas, and residues have led to more and more serious soil pollution problems. Zeolite is the most promising material for preparing a green and environmentally friendly soil conditioner. Herein, the carbon nanotubes/polydopamine/ZSM-5 composite soil conditioner was prepared by a facile two-step method, and it was used to release fulvic acid and adsorb methylene blue to improve the environment. The cumulative release rate of the composite soil conditioner was 52% within 430 h for fulvic acid, which had a good sustained release effect and could be sustained-released in different acid-based surroundings. In addition, it showed a good adsorption capacity of methylene blue, and it is about 80.02 mg/g which was about six times higher than that of ZSM-5. It was beneficial for the adsorption of methylene blue in a neutral environment. Finally, it could promote the growth of brassica chinensis and maize, and the promotion effect was 60 and 35%, respectively. Therefore, the carbon nanotubes/polydopamine/ZSM-5 composite soil conditioner is a green and efficient material, which provides a new strategy to solve the problem of soil pollution.
Collapse
Affiliation(s)
- Shuhong Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Fan Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Ye Zhang
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, Paris F-75013, France
| | - Kailing Xiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jiacheng Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Weisen Dai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jincheng Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Yuan Li
- Jiangsu LuHong Landscaping Engineering Company Limited, Jiangsu 226100, P. R. China
- Nantong Gaoqiu Biomedical Technology Company Limited, Jiangsu 226100, P. R. China
- Shanghai Gaoqiu Scientific Instrument Company Limited, Shanghai 200120, P. R. China
| |
Collapse
|
11
|
Magnetic cryogels as a shape-selective and customizable platform for hyperthermia-mediated drug delivery. Sci Rep 2022; 12:9654. [PMID: 35688935 PMCID: PMC9187744 DOI: 10.1038/s41598-022-13572-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
Cryogels consisting of polyvinyl alcohol and iron (II, III) oxide magnetic nanoparticles coated with a model drug—acetaminophen, were developed as a tunable platform for thermally triggered drug release, based on shape-selective heat transfer. Two different shapes of cryogels; discs and spherical caps, were formed via adding polymer-nanoparticle-drug mixtures into 3D printed molds, followed by freeze-thawing five times. No additional chemical crosslinking agents were used for gel formation and the iron oxide nanoparticles were coated with acetaminophen using only citric acid as a hydrogen-bonding linker. The two gel shapes displayed varying levels of acetaminophen release within 42–50 °C, which are ideal temperatures for hyperthermia induced drug delivery. The amount and time of drug-release were shown to be tunable by changing the temperature of the medium and the shape of the gels, while keeping all other factors (ex. gel volume, surface area, polymer/nanoparticle concentrations and drug-loading) constant. The discs displayed higher drug release at all temperatures while being particularly effective at lower temperatures (42–46 °C), in contrast to the spherical caps, which were more effective at higher temperatures (48–50 °C). Magnetic hyperthermia-mediated thermal imaging and temperature profiling studies revealed starkly different heat transfer behavior from the two shapes of gels. The disc gels retained their structural integrity up to 51 °C, while the spherical caps were stable up to 59 °C, demonstrating shape-dependent robustness. The highly customizable physicochemical features, facile synthesis, biocompatibility and tunable drug release ability of these cryogels offer potential for their application as a low cost, safe and effective platform for hyperthermia-mediated drug delivery, for external applications such as wound care/muscle repair or internal applications such as melanoma treatment.
Collapse
|
12
|
Quesada HB, de Araújo TP, Cusioli LF, de Barros MASD, Gomes RG, Bergamasco R. CAFFEINE REMOVAL BY CHITOSAN/ACTIVATED CARBON COMPOSITE BEADS: ADSORPTION IN TAP WATER AND SYNTHETIC HOSPITAL WASTEWATER. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Alacabey İ. Endosulfan Elimination Using Amine-Modified Magnetic Diatomite as an Adsorbent. Front Chem 2022; 10:907302. [PMID: 35720987 PMCID: PMC9205645 DOI: 10.3389/fchem.2022.907302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Pesticides are among the most dangerous developing toxins since they are very hazardous to the environment and threaten human health. In this study, researchers successfully manufactured surface-modified magnetic diatomite (m-DE-APTES) and used them as a sorbent to extract endosulfan from an aqueous solution. There is no other study like it in the scholarly literature, and the results are astounding. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), electron spin resonance (ESR), and surface area measurements were used to analyze magnetic diatomite particles with surface modification. According to the analysis results, magnetic diatomite has a wide surface area and a porous structure. Furthermore, m-DE-APTES has a higher endosulfan adsorption capacity (97.2 mg g−1) than raw diatomite (DE) (16.6 mg g−1). Adsorption statistics agree with Langmuir adsorption isotherm (R2 = 0.9905), and the adsorption occurred spontaneously at −2.576 kj mol−1 in terms of ΔGo. Finally, m-DE-APTES are a viable alternative adsorbent for removing pesticides from aqueous solutions.
Collapse
|
14
|
Invertase adsorption with polymers functionalized by aspartic acid. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Today, the separation and purification processes are highly preferred over the affinity interactions in the scientific world. Among the materials used for this purpose, magnetic particles and cryogels are very popular. Both polymeric structures have their advantages and disadvantages. In this study, poly(2-Hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid), poly(HEMA-MAsp), magnetic microparticles, and cryogels were synthesized, and adsorption performances of both polymeric structures were investigated by using invertase from aqueous systems. Invertase (β-fructofuranoside fructohydrolase, EC 3.2.1.26) is a commercially important enzyme used in the food industry to obtain the product called invert sugar, which consists of a mixture of equivalent amounts of glucose and fructose. Therefore, it was preferred as a model enzyme in adsorption studies of polymeric structures. According to the results, 104.1 mg g−1 and 135.5 mg g−1 of adsorption capacity values were obtained for cryogel and magnetic microparticle forms, respectively. Increasing temperature slightly reduced the adsorption capacity of both polymeric structures. In the adsorption/desorption cycle studies performed five times with poly(HEMA-MAsp) polymers, both forms were found to have high reusable properties. It was determined that the activity of invertase immobilized on polymeric structures was preserved at a rate of 83.6% for the particle form and 89.2% for the cryogel form.
Collapse
|
15
|
Li S, Yang F, Xiang K, Chen J, Zhang Y, Wang J, Sun J, Li Y. A Multifunctional Microspheric Soil Conditioner Based on Chitosan-Grafted Poly(acrylamide- co-acrylic acid)/Biochar. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5717-5729. [PMID: 35442693 DOI: 10.1021/acs.langmuir.2c00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A multifunctional microspheric soil conditioner based on chitosan-grafted poly(acrylamide-co-acrylic acid)/biochar [CS-g-P(AM-co-AA)/BC] was prepared. First, the P(AM-co-AA) was synthesized and successfully grafted onto CS, and the three-dimensional network structure of microspheres was formed with N,N-methylenebis(acrylamide) as the cross-linking agent according to the inverse suspension polymerization method. Meanwhile, BC and urea were encapsulated into the body of microspheres during the polymerization. The structure of the microspheres was analyzed by Fourier transform infrared spectroscopy, polarized optical microscopy, and scanning electron microscopy, and the mechanism of adsorption of Cu2+ on the microspheres was investigated by X-ray photoelectron spectroscopy. Furthermore, the experimental results demonstrated the excellent water absorption and retention capabilities of microspheres, and the release rate of urea was dramatically reduced. Importantly, the introduction of BC significantly enhanced the adsorption performance of the microspheres with respect to heavy metal ions. Consequently, the multifunctional soil conditioner held promise for use in soil improvement and agricultural production.
Collapse
Affiliation(s)
- Shuhong Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Fan Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Kailing Xiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jiacheng Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Ye Zhang
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Jincheng Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jibo Sun
- Wopu New Material Technology (Shanghai) Company, Ltd., Shanghai 201600, P. R. China
| | - Yuan Li
- Jiangsu Lvhong Landscaping Engineering Company, Ltd., Jiangsu 226100, P. R. China
| |
Collapse
|
16
|
Bai H, Wang B, Talifu D, Abulizi A, Maihemuti M. Treatment on thiodicarb in pesticide wastewater with walnut shells-derived carbon and its improved modification: adsorption behavior. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2682-2692. [PMID: 35576261 DOI: 10.2166/wst.2022.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The health problems caused by water pollution cannot be ignored, and the contribution of pesticides to water pollution has also become increasingly unignorable. The modified semi-coke as an adsorbent for reducing pesticide pollution to water was obtained from activated semi-coke which was modified by nitric acid (HNO3). The semi-coke was obtained by carbonization using 60 mesh walnut shell powder. After acid-base deashing, the semi-coke is dipped into zinc chloride (ZnCl2) solution to obtain activated semi-coke. Through BET analysis, the specific surface areas of semi-coke, activated semi-coke and modified semi-coke were 26.8 m2/g, 243.9 m2/g, and 339.6 m2/g respectively. An extremely high adsorption capacity of the adsorbents which is used to treat wastewater was achieved. The optimum adsorption conditions for modified semi-coke on thiodicarb solution were 30 mg/L of thiodicarb solution, adsorbent dosage of 0.01 g, adsorption temperature of 25 °C and adsorption time of 90 min. The optimum adsorption amount of 29.54 mg/gsor was achieved (sor is the abbreviation for sorbent). Moreover, through kinetics study, the result manifests that the modified semi-coke adsorption process is more fitted to the second-order kinetic model. This study provided a research implication theoretically for the treatment of pesticides in water.
Collapse
Affiliation(s)
- Haifeng Bai
- Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, PR China E-mail:
| | - Bin Wang
- Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, PR China E-mail:
| | - Dilinuer Talifu
- Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, PR China E-mail:
| | - Abulikemu Abulizi
- Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, PR China E-mail:
| | - Mailikezhati Maihemuti
- Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, PR China E-mail:
| |
Collapse
|
17
|
Antibiotic Removal from the Aquatic Environment with Activated Carbon Produced from Pumpkin Seeds. Molecules 2022; 27:molecules27041380. [PMID: 35209169 PMCID: PMC8877137 DOI: 10.3390/molecules27041380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotics are among the most critical environmental pollutant drug groups. Adsorption is one of the methods used to eliminate these pollutants. In this study, activated carbon was produced from pumpkin seed shells and subsequently modified with KOH. The adsorbent obtained through this procedure was used to remove ciprofloxacin from aqueous systems. Fourier Transform-Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), elemental, X-ray Photoelectron Spectroscopy (XPS), Brunauer–Emmett–Teller (BET) and Zeta analyses were used to characterize the adsorbent. The surface area, in particular, was found to be a very remarkable value of 2730 m2/g. The conditions of the adsorption experiments were optimized based on interaction time, adsorbent amount, pH and temperature. Over 99% success was achieved in removal operations carried out under the most optimal conditions, with an absorption capacity of 884.9 mg·g−1. In addition, the Langmuir isotherm was determined to be the most suitable model for the adsorption interaction.
Collapse
|
18
|
El-Nahhal I, El-Nahhal Y. Pesticide residues in drinking water, their potential risk to human health and removal options. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113611. [PMID: 34526283 DOI: 10.1016/j.jenvman.2021.113611] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The application of pesticides in agricultural and public health sectors has resulted in substantially contaminated water resources with residues in many countries. Almost no reviews have addressed pesticide residues in drinking water globally; calculated hazard indices for adults, children, and infants; or discussed the potential health risk of pesticides to the human population. The objectives of this article were to summarize advances in research related to pesticide residues in drinking water; conduct health risk assessments by estimating the daily intake of pesticide residues consumed only from drinking water by adults, children, and infants; and summarize options for pesticide removal from water systems. Approximately 113 pesticide residues were found in drinking water samples from 31 countries worldwide. There were 61, 31, and 21 insecticide, herbicide, and fungicide residues, respectively. Four residues were in toxicity class IA, 14 residues were in toxicity class IB, 55 residues were in toxicity class II, 17 residues were in toxicity class III, and 23 residues were in toxicity class IV. The calculated hazard indices (HIs) exceeded the value of one in many cases. The lowest HI value (0.0001) for children was found in Canada, and the highest HI value (30.97) was found in Egypt, suggesting a high potential health risk to adults, children, and infants. The application of advanced oxidation processes (AOPs) showed efficient removal of many pesticide classes. The combination of adsorption followed by biodegradation was shown to be an effective and efficient purification option. In conclusion, the consumption of water contaminated with pesticide residues may pose risks to human health in exposed populations.
Collapse
Affiliation(s)
| | - Yasser El-Nahhal
- Dept. of Earth and Environmental Science Faculty of Science, The Islamic University, Gaza, Palestine.
| |
Collapse
|
19
|
Rekos K, Kampouraki ZC, Panou C, Baspanelou A, Triantafyllidis K, Deliyanni E. Adsorption of DBT and 4,6-DMDBTon nanoporous activated carbons: the role of surface chemistry and the solvent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59050-59062. [PMID: 32270454 DOI: 10.1007/s11356-020-08242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Adsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) from solutions in hexane and hexadecane respectively as well as in acetonitrile for both thiophenic compounds was investigated with sorbents of three activated carbons and their oxidized counterparts. The raw sorbents were of different surface acidity. Oxygen surface groups created after oxidation increased the adsorption of thiophenic compounds via polar interactions.
Collapse
Affiliation(s)
- Kyriazis Rekos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Zoi-Christina Kampouraki
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Chrisowalantou Panou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Alexandra Baspanelou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Konstantinos Triantafyllidis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
20
|
Jawad AH, Abdulhameed AS, Bahrudin NN, Hum NNMF, Surip SN, Syed-Hassan SSA, Yousif E, Sabar S. Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1858-1872. [PMID: 34695015 DOI: 10.2166/wst.2021.355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high-surface-area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This SBW activated carbon (SBWAC) was characterized by crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. Conversely, a thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high-surface-area AC that can potentially remove more cationic dyes from the aqueous environment.
Collapse
Affiliation(s)
- Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia E-mail: ;
| | - Ahmed Saud Abdulhameed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad, Iraq
| | - Noor Nazihah Bahrudin
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - S N Surip
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia E-mail: ;
| | - Syed Shatir A Syed-Hassan
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, 64021 Baghdad, Iraq
| | - S Sabar
- Chemical Sciences Programme, School of DistanceEducation (SDE), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
21
|
Zhang J, Zhu M, Jones I, Zhang Z, Gao J, Zhang D. Performance of activated carbons prepared from spent tyres in the adsorption of rhodamine B in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52862-52872. [PMID: 34019212 DOI: 10.1007/s11356-021-14502-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Activated carbons were produced from spent tyre pyrolysis char by steam or CO2 activation and evaluated for their performance in rhodamine B (RhB) adsorption in aqueous solutions. The effect of RhB starting concentration (80-150 mg L-1), contact time (0-80 min), temperature (298-318 K) and initial pH on the adsorption process was examined. Pseudo-first-order and pseudo-second-order models were carried out to fit the experimental data to derive RhB adsorption kinetics. Langmuir, Freundlich and Temkin isotherm models were applied to depict RhB adsorption behaviour of the prepared activated carbons. Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were calculated. It has been found that the activated carbons can effectively adsorb RhB due to high mesoporosity and RhB equilibrium adsorption capacity (qe) increased almost linearly with increasing total mesopore volumes, regardless of the activation agents. When BET surface areas are similar, CO2-activated carbon obtained higher qe than steam due to higher mesoporosity of CO2-activated carbon. The results show that pseudo-second-order well fitted the experimental data. RhB starting concentration increased from 80 to 150 mg L-1 causing qe increased from 158 to 251 mg g-1 but RhB removal decreased from 99.7 to 84.5%. The RhB adsorption process follows the Langmuir model and thermodynamic calculation, indicating RhB adsorption is an endothermic, spontaneous process, dominated by both chemisorption and physisorption.
Collapse
Affiliation(s)
- Juan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, China
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mingming Zhu
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Isabelle Jones
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Zhezi Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Jian Gao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Dongke Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
22
|
Erol K, Bülter MB, Köse DA, Can HK. Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Making cryogels, which are among today’s accepted adsorbents, more functional with different methods, has been one of the subjects spent overtime. In this study, water-soluble poly(maleic anhydride-alt-acrylic acid) polymer embedded in poly(2-hydroxyethyl methacrylate) cryogels. Copper ions were then immobilised to this structure, and this polymer was used for adsorption of haemoglobin from aqueous systems. Adsorption interaction was carried out on an electrostatic basis, and approximately 448.62 mg haemoglobin/g polymer adsorption capacity value was obtained. It was found that the same material has managed to maintain its adsorption ability by 90.3% even after the use of it five times in the adsorption/desorption cycle. The adsorption interaction was determined to be appropriate for the Langmuir model by isotherm studies. The change in Gibbs free energy value was calculated as −2.168 kJ/mol.
Collapse
Affiliation(s)
- Kadir Erol
- Department of Medical Services and Techniques , Vocational School of Health Services, Hitit University , Çorum 19030 , Turkey
| | - Melda Bolat Bülter
- Department of Property Protection and Security , Vocational School of Technical Sciences, Hitit University , Çorum 19900 , Turkey
| | - Dursun Ali Köse
- Department of Chemistry , Faculty of Arts and Sciences, Hitit University , Çorum 19040 , Turkey
| | - Hatice Kaplan Can
- Department of Chemistry , Faculty of Science, Hacettepe University , Ankara 06800 , Turkey
| |
Collapse
|
23
|
Genli N, Kutluay S, Baytar O, Şahin Ö. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:88-100. [PMID: 34024213 DOI: 10.1080/15226514.2021.1926911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, mesoporous activated carbon (AC) was prepared through potassium hydroxide (KOH) activation of hydrochar derived from the hydrothermal carbonization (HTC) of chickpea stem (CS), and successfully applied to remove methylene blue (MB) dye from aqueous solutions in a batch system. The HTC-CSAC was prepared depending on different impregnation ratios (hydrochar:KOH, 50-150%), impregnation times (12-48 h), activation temperatures (400-600°C) and activation times (30-60 min). To define HTC-CSAC, various analytical techniques such as iodine adsorption number (IAN), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) were used. In the removal process of MB by the best HTC-CSAC with a high IAN of 887 mg g-1 obtained under conditions including impregnation ratio of 70%, activation time of 45 min, activation temperature of 600°C and impregnation time of 24 h, the effects of adsorption parameters such as pH factor (2-10), adsorbent dosage (50-100 mg), initial MB concentration (40-80 mg/L) and contact time (90-180 min) were studied. Besides, a detailed evaluation of the adsorption mechanism for the removal of MB by HTC-CSAC was performed. The Langmuir model indicated the best isotherm data correlation, with a maximum monolayer adsorption capacity (Qmax) of 96.15 mg g-1. The adsorption isotherm findings demonstrated that the MB removal process is feasible, and that this process takes place through the physical interaction mechanism. Additionally, the HTC-CSAC adsorbent exhibited a high regeneration and reuse performance in MB removal. After five consecutive adsorption-desorption cycles, HTC-CSAC maintained the reuse efficiency of 77.86%. As a result, the prepared HTC-CSAC with a high BET surface area of 455 m2 g-1 and an average pore diameter of 105 Å could be recommended as a promising and reusable adsorbent in the treatment of synthetic dyes in wastewaters.
Collapse
Affiliation(s)
- Nasrettin Genli
- Vocational School of Diyarbakir, Dicle University, Diyarbakir, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
24
|
Preparation and non-isothermal cure kinetics study of epoxy resin nanocomposites with amine and epoxy functionalized magnetic nanoparticles. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211012446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amine-functionalized magnetic nanoparticles NiFe2O4@SiO2@Amine (AMNP), and epoxy functionalized magnetic nanoparticles, CuFe2O4@SiO2@Epoxy (EMNP) were synthesized in three steps. Homogeneous stable dispersion of AMNP and EMNP, at concentrations of 1, 5, 10, 15, 20 wt% in epoxy resin were prepared using stoichiometric amounts of 4,4’-diaminodiphenylsulfone (DDS) as a curing. The optimum ratio of AMNP and EMNP were found to be 5%, and these were investigated by the total enthalpy of the curing reaction using differential scanning calorimetry (DSC) thermograms at 10°C/min. The cure kinetics of epoxy resin-functional magnetic nanoparticles-DDS composites were studied using non-isothermal DSC thermograms at different heating rates (5, 10, 15, 20°C/min). The kinetic parameters of the curing process, such as activation energy ( Ea), pre-exponential factor ( A), and rate constant ( k) were determined using several non-isothermal kinetic methods: Kissinger-Akahira-Sunose (KAS), Kissinger, Straink, Flynn-Wall-Ozawa (OFW), and Bosewell. The kinetic curing values obtained with different kinetic methods are well-matched. The Ea values were calculated in the range of 59.80 to 65.94, 57.69 to 63.92, and 45.38 to 52.45 kJ.mol−1 for the DGEBA/DDS, DGEBA/DDS/AMNP, and DGEBA/DDS/EMNP systems respectively. Also, The A values, using the Kissinger method, were calculated to be in the range of 7.0 × 105, 4.0 × 105, and 0.2 × 105 S−1 for the DGEBA/DDS, DGEBA/DDS/AMNP, and DGEBA/DDS/EMNP systems respectively. The glass transition temperatures of cured resins were determined with DSC, and the surface morphology of the nanocomposites and also the dispersion of the nanoparticles were investigated using scanning electron microscopy (SEM).
Collapse
|
25
|
Kireç O, Alacabey İ, Erol K, Alkan H. Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Sub-microparticles have many applications in different fields today. In this study, it is aimed to develop hydrophobic microparticles as an alternative to existing methods and to determine the 17β-estradiol adsorption performance of this adsorbent to purify the 17β-estradiol hormone which is found as an endocrine disruptor in environmental waters with high capacity and low cost. In this study, l-phenylalanine containing Poly(HEMA-MAPA) microparticles were synthesized by microemulsion polymerization and used as adsorbent. Microparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) methods. The size of the Poly(HEMA-MAPA) microparticles used was measured as 120–200 nm. Specific surface area and elemental analysis studies were also conducted. While the surface area of the particles was found to be a very high value of 1890 m2/g, the amount of incorporation of MAPA into the polymeric structure was calculated as 0.43 mmol/g. Adsorption studies were carried out in the batch system under different ambient conditions (17β-estradiol concentration, temperature, ionic intensity). The adsorption capacity of Poly(HEMA-MAPA) microparticles was calculated to be 98.4 mg/g. Isotherm models for adsorption interaction were investigated deeply, and it was determined that the adsorption mechanism is suitable for Langmuir isotherm.
Collapse
Affiliation(s)
- Osman Kireç
- Department of Chemistry, Faculty of Science , Dicle University , 21280 Diyarbakır , Turkey
| | - İhsan Alacabey
- Vocational School of Health Services , Mardin Artuklu University , 47200 Mardin , Turkey
| | - Kadir Erol
- Hitit University , Vocational School of Health Services , Department of Medical Services and Techniques , Çorum , Turkey
| | - Hüseyin Alkan
- Department of Biochemistry, Faculty of Pharmacy , Dicle University , 21280 Diyarbakır , Turkey
| |
Collapse
|
26
|
Shirkhanloo H, Khaleghi Abbasabadi M, Hosseini F, Faghihi Zarandi A. Nanographene oxide modified phenyl methanethiol nanomagnetic composite for rapid separation of aluminum in wastewaters, foods, and vegetable samples by microwave dispersive magnetic micro solid-phase extraction. Food Chem 2021; 347:129042. [PMID: 33482488 DOI: 10.1016/j.foodchem.2021.129042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/27/2022]
Abstract
A new method based on graphene oxide modified (4-phenyl) methanethiol nanomagnetic composite (Fe3O4@4-PhMT-GO) was used for extraction and separation of aluminum from wastewater, food, and vegetable samples in aluminum cookware by microwave dispersive magnetic micro solid-phase extraction (MDM-μ-SPE). In optimized conditions, the working range (WR), the linear range (LR), the limit of detection (LOD), and enrichment factor (EF) were obtained 5-5200 μg L-1, 5-1600 μg L-1, 1.5 µg L-1, and 48.8, respectively (RSD% = 2.5). By MDM-μ-SPE procedure, the aluminum concentrations in baking rice and spinach with aluminum cookware were obtained 97.43 ± 2.57 mg g-1 and 131.64 ± 5.18 mg g-1, respectively which was analyzed by atom trap flame atomic absorption spectrometer (AT-FAAS). The results showed, the aluminum concentrations in cooked foods with Teflon cookware were less than aluminum cookware. The methodology was validated by standard reference materials (SRM) and inductively coupled plasma mass spectrometry analysis (ICP-MS).
Collapse
Affiliation(s)
- Hamid Shirkhanloo
- Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, Tehran 14857-33111, Iran.
| | - Masoud Khaleghi Abbasabadi
- Nano Technology Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran, Iran
| | - Farnaz Hosseini
- Islamic Azad University of Pharmaceutical Sciences (IAUPS), Medical Nano Technology Tehran, Iran
| | - Ali Faghihi Zarandi
- Occupational Health Engineering Department, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|