1
|
Liu Y, Li J, Xiong Y, Tan C, Li C, Cao Y, Xie W, Deng Z. Long-term exposure to PM 2.5 leads to mitochondrial damage and differential expression of associated circRNA in rat hepatocytes. Sci Rep 2024; 14:11870. [PMID: 38789588 PMCID: PMC11126672 DOI: 10.1038/s41598-024-62748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Fine particulate matter (PM2.5) is one of the four major causes of mortality globally. The objective of this study was to investigate the mechanism underlying liver injury following exposure to PM2.5 and the involvement of circRNA in its regulation. A PM2.5 respiratory tract exposure model was established in SPF SD male rats with a dose of 20 mg/kg, and liver tissue of rats in control group and PM2.5-exposed groups rats were detected. The results of ICP-MS showed that Mn, Cu and Ni were enriched in the liver. HE staining showed significant pathological changes in liver tissues of PM2.5-exposed group, transmission electron microscopy showed significant changes in mitochondrial structure of liver cells, and further mitochondrial function detection showed that the PM2.5 exposure resulted in an increase in cell reactive oxygen species content and a decrease in mitochondrial transmembrane potential, while the expression of SOD1 and HO-1 antioxidant oxidase genes was upregulated. Through high-throughput sequencing of circRNAs, we observed a significant down-regulation of 10 and an up-regulation of 17 circRNAs in the PM2.5-exposed groups. The functional enrichment and pathway analyses indicated that the differentially expressed circRNAs by PM2.5 exposure were primarily associated with processes related to protein ubiquitination, zinc ion binding, peroxisome function, and mitochondrial regulation. These findings suggest that the mechanism underlying liver injury induced by PM2.5-exposure may be associated with mitochondrial impairment resulting from the presence of heavy metal constituents. Therefore, this study provides a novel theoretical foundation for investigating the molecular mechanisms underlying liver injury induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Jing Li
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Yican Xiong
- Department of Ophthalmology and Stomatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Chaochao Tan
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Cunyan Li
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Youde Cao
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Wanying Xie
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Zhonghua Deng
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China.
| |
Collapse
|
2
|
Furci F, Allegra A, Tonacci A, Isola S, Senna G, Pioggia G, Gangemi S. Air Pollution and microRNAs: The Role of Association in Airway Inflammation. Life (Basel) 2023; 13:1375. [PMID: 37374157 DOI: 10.3390/life13061375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Air pollution exposure plays a key role in the alteration of gene expression profiles, which can be regulated by microRNAs, inducing the development of various diseases. Moreover, there is also evidence of sensitivity of miRNAs to environmental factors, including tobacco smoke. Various diseases are related to specific microRNA signatures, suggesting their potential role in pathophysiological processes; considering their association with environmental pollutants, they could become novel biomarkers of exposure. Therefore, the aim of the present work is to analyse data reported in the literature on the role of environmental stressors on microRNA alterations and, in particular, to identify specific alterations that might be related to the development of airway diseases so as to propose future preventive, diagnostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Furci
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98124 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Gianenrico Senna
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| |
Collapse
|
3
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
4
|
Cui Y, Zhao X, Wu Y. Circ_0005918 Sponges miR-622 to Aggravate Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 10:905213. [PMID: 35874804 PMCID: PMC9304550 DOI: 10.3389/fcell.2022.905213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intervertebral discdegeneration (IDD) is the most common cause of lower back pain, but the exact molecular mechanism of IDD is still unknown. Recently, studies have shown that circular RNAs (circRNAs) regulate diverse biological procedures such as cell metastasis, growth, metabolism, migration, apoptosis, and invasion. We demonstrated that IL-1β and TNF-α induced circ_0005918 expression in the NP cell, and circ_0005918 was overexpressed in the IDD group compared with the control group. Moreover, the upregulated expression of circ_0005918 was associated with disc degeneration degree. The elevated expression of circ_0005918 promoted cell growth and ECM degradation, and it induced secretion of inflammatory cytokines including IL-1β, IL-6, and TNF-α. Moreover, we found that circ_0005918 sponged miR-622 in the NP cell. In addition, the exposure to IL-1β and TNF-α suppressed the expression of miR-622, which was downregulated in the IDD group compared with the control group. Furthermore, the downregulated expression of miR-622 was associated with disc degeneration degree. The expression level of miR-622 was negatively associated with circ_0005918 expression in the IDD group. In conclusion, circ_0005918 regulated cell growth, ECM degradation, and secretion of inflammatory cytokines by regulating miR-622 expression. These data suggested that circ_0005918 played important roles in the development of IDD via sponging miR-622.
Collapse
|
5
|
Xu D, Ma X, Sun C, Han J, Zhou C, Wong SH, Chan MTV, Wu WKK. Circular RNAs in Intervertebral Disc Degeneration: An Updated Review. Front Mol Biosci 2022; 8:781424. [PMID: 35071323 PMCID: PMC8770867 DOI: 10.3389/fmolb.2021.781424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 01/26/2023] Open
Abstract
Low back pain, a common medical condition, could result in severe disability and inflict huge economical and public health burden. Its pathogenesis is attributed to multiple etiological factors, including intervertebral disc degeneration (IDD). Emerging evidence suggests that circular RNAs (circRNAs), a major type of regulatory non-coding RNA, play critical roles in cellular processes that are pertinent to IDD development, including nucleus pulposus cell proliferation and apoptosis as well as extracellular matrix deposition. Increasing number of translational studies also indicated that circRNAs could serve as novel biomarkers for the diagnosis of IDD and/or predicting its clinical outcomes. Our review aims to discuss the recent progress in the functions and mechanisms of newly discovered IDD-related circRNAs.
Collapse
Affiliation(s)
- Derong Xu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuexiao Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Sun
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialuo Han
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanli Zhou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Sun S, Zhang Q, Sui X, Ding L, Liu J, Yang M, Zhao Q, Zhang C, Hao J, Zhang X, Lin S, Ding R, Cao J. Associations between air pollution exposure and birth defects: a time series analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4379-4394. [PMID: 33864585 DOI: 10.1007/s10653-021-00886-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is a serious environmental problem in China. Birth defects are particularly vulnerable to outdoor air pollution. Our study was to evaluate the association between short-term exposure to air pollutants and the risk of birth defects. Daily data including the air pollutants, meteorological characteristics, and birth records were obtained in Hefei, China, during January 2013 to December 2016. The findings showed that PM2.5, PM10, SO2, NO2, and O3 exposures were positively correlated with the risk of birth defects. Maternal exposure to PM2.5 and SO2 during the 4th to 13th gestational weeks was observed to have a significant association with the risk of birth defects, with the maximum effect in the 7th or 8th week for PM2.5 and the maximum effect in the 7th week for SO2. The positively significant exposure windows were the 4th to 14th weeks for PM10, the 4th to 12th weeks for NO2, and the 26th to 35th weeks for O3, respectively. The strongest associations were observed in the 8th week for PM10, the 7th week for NO2, and in the 31st or 32nd week for O3. The findings of this study demonstrate that air pollutants increase the risk of birth defects among women during pregnancy in Hefei, China, which provide evidence for improving the health of pregnant women and neonates in developing countries, and uncovered potential opportunities to reduce or prevent birth defects by proactive measures during pregnancy.
Collapse
Affiliation(s)
- Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinmiao Sui
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Liu Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mei Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Zhang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Jiahu Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiujun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shilei Lin
- Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Xu D, Ma X, Sun C, Han J, Zhou C, Chan MTV, Wu WKK. Emerging roles of circular RNAs in neuropathic pain. Cell Prolif 2021; 54:e13139. [PMID: 34623006 PMCID: PMC8666284 DOI: 10.1111/cpr.13139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is a major type of chronic pain caused by the disease or injury of the somatosensory nervous system. It afflicts about 10% of the general population with a significant proportion of patients’ refractory to conventional medical treatment. This highlights the importance of a better understanding of the molecular pathogenesis of neuropathic pain so as to drive the development of novel mechanism‐driven therapy. Circular RNAs (circRNAs) are a type of non‐coding, regulatory RNAs that exhibit tissue‐ and disease‐specific expression. An increasing number of studies reported that circRNAs may play pivotal roles in the development of neuropathic pain. In this review, we first summarize circRNA expression profiling studies on neuropathic pain. We also highlight the molecular mechanisms of specific circRNAs (circHIPK3, circAnks1a, ciRS‐7, cZRANB1, circZNF609 and circ_0005075) that play key functional roles in the pathogenesis of neuropathic pain and discuss their potential diagnostic, prognostic, and therapeutic utilization in the clinical management of neuropathic pain.
Collapse
Affiliation(s)
- Derong Xu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuexiao Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chong Sun
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jialuo Han
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuanli Zhou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Song N, Li X, Cui Y, Zhang T, Xu S, Li S. Hydrogen sulfide exposure induces pyroptosis in the trachea of broilers via the regulatory effect of circRNA-17828/miR-6631-5p/DUSP6 crosstalk on ROS production. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126172. [PMID: 34098264 DOI: 10.1016/j.jhazmat.2021.126172] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant to cause tracheal injury. Pyroptosis is responsible for tissue injury through reactive oxygen species (ROS) production. Competitive endogenous RNAs (ceRNAs) chelate microRNAs and reduce their inhibitory effect on other transcripts, thus affecting ROS levels and pyroptosis. However, it is not clear how H2S regulates pyroptosis via the ceRNA axis. Therefore, we established a broilers model of H2S exposure for 42 days to assess pyroptosis and obtain a ceRNA network by immunohistochemistry and RNA sequencing. We detected pyroptosis induced by H2S and verified circRNA-IGLL1-17828/miR-6631-5p/DUSP6 axis by a double luciferase reporter assay. We also measured ROS levels and the expression of pyroptotic indicators such as (Caspase1) Casp-1, Interleukin 1β (IL-1β) and Interleukin 1β (IL-18). miR-6631-5p knockdown decreased pyroptotic indicators induced by H2S. Overexpression of miR-6631-5p or DUSP6 knockdown stimulated ROS generation and upregulated pyroptotic indicators. N-acetyl-L-cysteine (NAC) decreased pyroptotic indicators and ROS levels both induced by miR-6631-5p. Moreover, circRNA-IGLL1-17828, participated in intermolecular competition as a ceRNA of DUSP6. In conclusion, circRNA-IGLL1-17828/miR-6631-5p/DUSP6 crosstalk regulated H2S-induced pyroptosis in broilers trachea via ROS generation. This is the first study to reveal regulation mechanism of circRNA-related CeRNAs on pyroptosis induced by H2S, providing important reference for environmental toxicology.
Collapse
Affiliation(s)
- Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Gao Q, Wang T, Pan L, Qian C, Wang J, Xin Q, Liu Y, Zhang Z, Xu Y, He X, Cao Y. Circular RNAs: Novel potential regulators in embryogenesis, female infertility, and pregnancy-related diseases. J Cell Physiol 2021; 236:7223-7241. [PMID: 33876837 DOI: 10.1002/jcp.30376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs with unique cyclic structures. Although they were previously considered as nonfunctional transcription byproducts, numerous studies have demonstrated that circRNAs regulate gene transcription and expression via different mechanisms. Reproductive health influences the quality of life and affects offspring propagation in women. CircRNAs have been found to modify pregnancy-related diseases, gynecologic cancers, polycystic ovary syndrome, aging, gamete, and embryo development. It's promising for circRNAs to be the novel diagnostic and therapeutic targets for multiple reproductive diseases. With the widespread application of assisted reproduction technology (ART), it has been revealed that circRNA identification contributes to estimating the quality of gametes and embryos, reflecting the success rate of ART. CRISPR-Cas9 gene editing technology has enabled the discovery of new roles of circRNAs. So far, the roles of circRNAs in the reproductive system remain poorly defined. In this review, we describe the classification and functions of circRNAs in embryogenesis and the female reproductive system diseases, revealing potential roles of circRNAs physiologically and pathologically. In so-doing, we provide ideas for developing circRNA-based therapeutic treatment and clinical application of various female reproductive system diseases.
Collapse
Affiliation(s)
- Qinyu Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Linxin Pan
- College of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Qian
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Qiong Xin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Abstract
Circular RNAs (circRNAs) are a type of closed, long, non-coding RNAs, which have attracted significant attention in recent years. CircRNAs exhibit unique functions and are characterized by stable expression in various tissues across different species. Because the identification of circRNA in plant viroids in 1976, numerous studies have been conducted to elucidate its generation as well as expression under normal and disease conditions. The rapid development of research focused on the roles of circRNAs as biomarkers in diseases such as cancers has led to increased interests in evaluating the effects of toxicants on the human genetics from a toxicological perspective. Notably, increasing amounts of chemicals are generated in the environment; however, their toxic features and interactions with the human body, particularly from the epigenetic viewpoint, remain largely unknown. Considering the unique features of circRNAs as potential prognostic biomarkers as well as their roles in evaluating health risks following exposure to toxicants, the aim of this review was to assess the latest progress in the research concerning circRNA, to address the role of the circRNA-miRNA-mRNA axis in diseases and processes occurring after exposure to toxic compounds. Another goal was to identify the gaps in understanding the interactions between toxic compounds and circRNAs as potential biomarkers. The review presents general information about circRNA (ie, biogenesis and functions) and provides insights into newly discovered exosome-contained circRNA. The roles of circRNAs as potential biomarkers are also explored. A comprehensive review of the available literature on the role of circRNA in toxicological research (ie, chemical carcinogenesis, respiratory toxicology, neurotoxicology, and other unclassified toxicological categories) is included.
Collapse
Affiliation(s)
- Yueting Shao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
11
|
Li Z, Ma J, Lin Y, Shen J, Wu Z, Chan MTV, Wu WKK. Embryonic gene expression altered by maternal exposure to air pollution in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31699-31705. [PMID: 32500497 DOI: 10.1007/s11356-020-09413-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Exposure to air pollution is known to increase the risks for cardiovascular, pulmonary and metabolic diseases. Growing evidences also indicated that air pollution exposure during pregnancy could negatively impact on early embryonic development and children's health. We performed RNA sequencing to identify deregulated mRNAs in air pollution-exposed rat embryos. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyse the potential cellular functions of deregulated mRNAs. Our analysis indicated that a total of 1678 mRNAs were differentially expressed on gestation day 9 upon in utero exposure to fine particulate matter of > 200 μg/m3, among which 1098 mRNAs were downregulated and 580 mRNAs were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed gap junction, cell adhesion, axon guidance and the neurotrophin signalling pathway as key biological processes perturbed by air pollution exposure. Furthermore, reconstruction of the mRNA regulatory network highlighted the central roles of Tbx4, Bmp4, Sox10, Wnt9b, Bmp7 and Foxc2. These data suggested that embryonic mRNA deregulation may underlie the formation of air pollution-associated congenital defects.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianqing Ma
- Department of Orthopedic Surgery, The General Hospital of Xingtai Mining Industry Bloc.,Orthopaedic Hospital of Xingtai, Xingtai, 054000, Hebei, China
| | - Youxi Lin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China.
| | - Zhanyong Wu
- Department of Orthopedic Surgery, The General Hospital of Xingtai Mining Industry Bloc.,Orthopaedic Hospital of Xingtai, Xingtai, 054000, Hebei, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|