1
|
Construction of ionic liquid-filled silica shell microcapsules based on emulsion template and evaluation of their adsorption properties toward 3,4,5-trichlorophenol after various surface functionalization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2
|
Nguyen TLA, Dao ATN, Dang HTC, Koekkoek J, Brouwer A, de Boer TE, van Spanning RJM. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by fungi originating from Vietnam. Biodegradation 2022; 33:301-316. [PMID: 35499742 PMCID: PMC9106640 DOI: 10.1007/s10532-022-09982-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Three different fungi were tested for their ability to degrade 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid and for the role of laccases and cytochromes P450-type in this process. We studied a white-rot fungus Rigidoporus sp. FMD21, which has a high laccase activity, for its efficiency to degrade these herbicides. A positive correlation was found between its laccase activity and the corresponding herbicide degradation rate. Even more, the doubling of the enzyme activity in this phase corresponded with a doubling of the herbicide degradation rate. It is, therefore, tempting to speculate that laccase is the most dominant enzyme in the degradation of 2,4-D and 2,4,5-T under these conditions. In addition, it was shown that Rigidoporus sp. FMD21 partly relies on cytochromes P450-type for the breakdown of the herbicides as well. Two filamentous fungi were isolated from soil contaminated with herbicides and dioxins located at Bien Hoa airbase. They belong to genera Fusarium and Verticillium of the phylum Ascomycota as judged by their 18S rRNA gene sequences. Both isolated fungi were able to degrade the herbicides but with different rates. Their laccase activity, however, was very low and did not correlate with the rate of breakdown of the herbicides. These data indicate that the white-rot fungus most likely synthesizes laccase and cytochromes P450-type for the breakdown of the herbicides, while the types of enzyme used for the breakdown of the herbicides by the two Ascomycota remain unclear.
Collapse
Affiliation(s)
- Thi Lan Anh Nguyen
- Department of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Anh Thi Ngoc Dao
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- MicroLife Solutions, Science Park 406, 1098 XH, Amsterdam, The Netherlands
| | - Ha Thi Cam Dang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Jacco Koekkoek
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH, Amsterdam, The Netherlands
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Tjalf E de Boer
- MicroLife Solutions, Science Park 406, 1098 XH, Amsterdam, The Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1. Microorganisms 2021; 9:microorganisms9020365. [PMID: 33673241 PMCID: PMC7918482 DOI: 10.3390/microorganisms9020365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
The strictly anaerobic bactGIerium Dehalococcoides mccartyi obligatorily depends on organohalide respiration for energy conservation and growth. The bacterium also plays an important role in bioremediation. Since there is no guarantee of a continuous supply of halogenated substrates in its natural environment, the question arises of how D. mccartyi maintains the synthesis and activity of dehalogenating enzymes under these conditions. Acetylation is a means by which energy-restricted microorganisms can modulate and maintain protein levels and their functionality. Here, we analyzed the proteome and Nε-lysine acetylome of D. mccartyi strain CBDB1 during growth with 1,2,3-trichlorobenzene as an electron acceptor. The high abundance of the membrane-localized organohalide respiration complex, consisting of the reductive dehalogenases CbrA and CbdbA80, the uptake hydrogenase HupLS, and the organohalide respiration-associated molybdoenzyme OmeA, was shown throughout growth. In addition, the number of acetylated proteins increased from 5% to 11% during the transition from the exponential to the stationary phase. Acetylation of the key proteins of central acetate metabolism and of CbrA, CbdbA80, and TatA, a component of the twin-arginine translocation machinery, suggests that acetylation might contribute to maintenance of the organohalide-respiring capacity of the bacterium during the stationary phase, thus providing a means of ensuring membrane protein integrity and a proton gradient.
Collapse
|