1
|
Capela R, Castro LF, Santos MM, Garric J. Development of a Lymnaea stagnalis embryo bioassay for chemicals hazard assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168061. [PMID: 37926257 DOI: 10.1016/j.scitotenv.2023.168061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
The validation of high-throughput toxicity tests with invertebrate species is a key priority to improve hazard assessment of new chemicals and increase the available test guidelines with organisms from a representative set of taxa. This work aimed to contribute to the validation of an embryo test with the freshwater gastropod Lymnaea stagnalis, which has been identified by Organization for Economic Co-operation and Development (OECD) as a potential invertebrate test model, and provide the basis for such an endeavor. Recently, a L. stagnalis reproductive test was standardized by the OECD. However, to encompass the entire life cycle, it is crucial to addresses embryogenic development - a phase highly susceptible to various anthropogenic chemicals, which is covered in the proposed methodology. The approach used in the present study is in line with the OECD guidelines and other published studies, namely the Detailed Review Paper (DRP) on Mollusks life-cycle toxicity testing. Here, the assay quality criteria such as basal mortality and abnormality rates, development, growth and hatching rates, the appropriated testing media, and the optimal assay duration were investigated. Cadmium was chosen as the positive test substance, due to the available data and the verified model sensitivity to this compound, namely in the OECD reproductive test validation process. The obtained data demonstrate that L. stagnalis embryogenesis using the developed methodology is highly sensitive to cadmium. High concentration-response correlation was observed using this reference compound, the EC10 and EC50 for growth are 13.57 and 21.84 μg/L, respectively, after 168 h of exposure. The development EC's 10 and 50 were 15.75 and 38.66 μg/L, respectively, after 240 h. This demonstrates the model sensitivity to this compound when compared with other embryo test models, as well as the model sensitivity during the embryogenesis, if compared with the adult stage. Further, given the determined sensitivity parameters, and incubation times, the test can be performed at 240 h as over 95 % of the control embryos were hatched and no further significant changes in the exposure groups were determined. Overall, the findings of the present study demonstrate that the embryo test with L. stagnalis has potential to high-throughput testing and the model has a high sensitivity to cadmium during this life cycle period. The background data provide by this study will be essential to foster the future standardization of this assay.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; INRAE - National Research Institute for Agriculture, Food and the Environment - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Luís Filipe Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Jeanne Garric
- INRAE - National Research Institute for Agriculture, Food and the Environment - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| |
Collapse
|
2
|
Jiang Z, Shen Y, Niu Z, Li X. Effects of cadmium and diethylhexyl phthalate on skin microbiota of Rana chinensis tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64285-64299. [PMID: 37067706 DOI: 10.1007/s11356-023-26853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Skin microbiotas play a crucial role in the health, homeostasis, and immune function of amphibians. The contaminants in water could affect the structure and composition of microbial communities. The effects of coexisting pollutants on frogs cannot be adequately explained by a single exposure due to the coexistence of Cd and DEHP in the environment. Following exposure to Cd and/or DEHP, we examined the histological characteristics of Rana chensinensis tadpoles. We also used the 16S rRNA gene sequencing technique to assess the relative abundance of skin microbial communities among tadpoles from each treatment group. Our findings indicate that R. chensinensis' skin experienced some degree of injury due to exposure to Cd and DEHP, which led to the imbalance of their skin microbial community homeostasis and thus interfered with the normal trial status of the host. That may eventually lead to the decline of the amphibian population.
Collapse
Affiliation(s)
- Zhaoyang Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Yujia Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Ziyi Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Campoy-Diaz AD, Malanga G, Giraud-Billoud M, Vega IA. Changes in the oxidative status and damage by non-essential elements in the digestive gland of the gastropod Pomacea canaliculata. Front Physiol 2023; 14:1123977. [PMID: 37035656 PMCID: PMC10073435 DOI: 10.3389/fphys.2023.1123977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
The freshwater gastropod Pomacea canaliculata fulfills the ideal conditions of a bioindicator species since its digestive gland bioconcentrates elements toxic for human and ecosystems health. The aim of this work was to study the balance between production of free radicals and antioxidant defenses, and the generation of oxidative damage in the digestive gland of this mollusk after exposure (96 h) to three elements with differential affinities for functional biological groups: mercury (5.5 μg/L of Hg+2 as HgCl2), arsenic [500 μg/L of (AsO4)-3 as Na3AsO47H2O], or uranium [700 μg/L of (UO2)+2 as UO2(CH2COOH)2]. Bioconcentration factors of Hg, As, and U were 25, 23, and 53, respectively. Snails exhibited a sustained increase of reactive species (RS), and protein and lipid damage. Lipid radicals increased between 72 and 96 h, respectively, in snails exposed to U and Hg while this parameter changed early (24 h) in As- exposed snails. Snails showed protein damage, reaching maximum values at different endpoints. This redox disbalance was partially compensated by non-enzymatic antioxidant defenses α-tocopherol (α-T), β-carotene (β-C), uric acid, metallothionein (MTs). Snails consumed α-T and β-C in an element-dependent manner. The digestive gland consumed rapidly uric acid and this molecule was not recovered at 96 h. Digestive gland showed a significant increase in MTs after elemental exposure at different endpoints. The enzymatic antioxidant defenses, represented by the catalase and glutathione-S-transferase activities, seems to be not necessary for the early stages of the oxidative process by metals. This work is the first attempt to elucidate cellular mechanisms involved in the tolerance of this gastropod to non-essential elements. The bioconcentration factors and changes in the oxidative status and damage confirm that this species can be used as a bioindicator species of metal pollution in freshwater bodies.
Collapse
Affiliation(s)
- Alejandra D. Campoy-Diaz
- IHEM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
| | - Gabriela Malanga
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Giraud-Billoud
- IHEM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
| | - Israel A. Vega
- IHEM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Israel A. Vega, ,
| |
Collapse
|
4
|
Wnt/β-Catenin Signaling Pathway Is Strongly Implicated in Cadmium-Induced Developmental Neurotoxicity and Neuroinflammation: Clues from Zebrafish Neurobehavior and In Vivo Neuroimaging. Int J Mol Sci 2022; 23:ijms231911434. [PMID: 36232737 PMCID: PMC9570071 DOI: 10.3390/ijms231911434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal and worldwide environmental pollutant which seriously threatens human health and ecosystems. It is easy to be adsorbed and deposited in organisms, exerting adverse effects on various organs including the brain. In a very recent study, making full use of a zebrafish model in both high-throughput behavioral tracking and live neuroimaging, we explored the potential developmental neurotoxicity of Cd2+ at environmentally relevant levels and identified multiple connections between Cd2+ exposure and neurodevelopmental disorders as well as microglia-mediated neuroinflammation, whereas the underlying neurotoxic mechanisms remained unclear. The canonical Wnt/β-catenin signaling pathway plays crucial roles in many biological processes including neurodevelopment, cell survival, and cell cycle regulation, as well as microglial activation, thereby potentially presenting one of the key targets of Cd2+ neurotoxicity. Therefore, in this follow-up study, we investigated the implication of the Wnt/β-catenin signaling pathway in Cd2+-induced developmental disorders and neuroinflammation and revealed that environmental Cd2+ exposure significantly affected the expression of key factors in the zebrafish Wnt/β-catenin signaling pathway. In addition, pharmacological intervention of this pathway via TWS119, which can increase the protein level of β-catenin and act as a classical activator of the Wnt signaling pathway, could significantly repress the Cd2+-induced cell cycle arrest and apoptosis, thereby attenuating the inhibitory effects of Cd2+ on the early development, behavior, and activity, as well as neurodevelopment of zebrafish larvae to a certain degree. Furthermore, activation and proliferation of microglia, as well as the altered expression profiles of genes associated with neuroimmune homeostasis triggered by Cd2+ exposure could also be significantly alleviated by the activation of the Wnt/β-catenin signaling pathway. Thus, this study provided novel insights into the cellular and molecular mechanisms of Cd2+ toxicity on the vertebrate central nervous system (CNS), which might be helpful in developing pharmacotherapies to mitigate the neurological disorders resulting from exposure to Cd2+ and many other environmental heavy metals.
Collapse
|
5
|
Teng Y, Ren C, Chen X, Shen Y, Zhang Z, Chai L, Wang H. Effects of cadmium exposure on thyroid gland and endochondral ossification in Rana zhenhaiensis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103860. [PMID: 35367624 DOI: 10.1016/j.etap.2022.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Discovery of elevated concentrations of cadmium in the natural environment has increased awareness because of their potential threats. Amphibians are negatively affected due to their moderate sensitivity to cadmium. Here, we conduct acute and subchronic toxicity tests to examine whether, and to what extent, cadmium exposure disturbs metamorphosis, growth, and kinetic ability of Rana zhenhaiensis. We set different concentration treatment groups for the subchronic toxicity test (0, 10, 40, 160 μg Cd L-1). Our findings demonstrate that cadmium exposure reduces growth parameters and the cumulative metamorphosis percent of R. zhenhaiensis. Decreases in follicular size and follicular epithelial cell thickness of thyroid gland are found in the treatment group. Further, subchronic exposure to cadmium decreases ossification ratio of hindlimbs in all treatment. Also, adverse effects of cadmium exposure on aquatic tadpoles can result in the reduced physical parameters and weak jumping ability in adult frogs. In this sense, our study suggests that cadmium adversely influences body condition and metamorphosis of R. zhenhaiensis, damages thyroid gland and impairs endochondral ossification. Meanwhile, we speculated that cadmium-damaged thyroid hormones inhibit skeletal development, resulting in the poor jumping ability, which probably leads to reduced survival of R. zhenhaiensis.
Collapse
Affiliation(s)
- Yiran Teng
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chaolu Ren
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyan Chen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhiyi Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Xu Y, Zhao H, Wang Z, Gao H, Liu J, Li K, Song Z, Yuan C, Lan X, Pan C, Zhang S. Developmental exposure to environmental levels of cadmium induces neurotoxicity and activates microglia in zebrafish larvae: From the perspectives of neurobehavior and neuroimaging. CHEMOSPHERE 2022; 291:132802. [PMID: 34752834 DOI: 10.1016/j.chemosphere.2021.132802] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a worldwide environmental pollutant that postures serious threats to humans and ecosystems. Over the years, its adverse effects on the central nervous system (CNS) have been concerned, whereas the underlying cellular/molecular mechanisms remain unclear. In this study, taking advantages of zebrafish model in high-throughput imaging and behavioral tests, we have explored the potential developmental neurotoxicity of Cd at environmentally relevant levels, from the perspectives of neurobehavior and neuroimaging. Briefly, Cd2+ exposure resulted in a general impairment of zebrafish early development. Zebrafish neurobehavioral patterns including locomotion and reactivity to environmental signals were significantly perturbed upon Cd2+ exposure. Importantly, a combination of in vivo two-photon neuroimaging, flow cytometry and gene expression analyses revealed notable neurodevelopmental disorders as well as neuroimmune responses induced by Cd2+ exposure. Both cell-cycle arrest and apoptosis contributed jointly to a significant decrease of neuronal density in zebrafish larvae exposed to Cd2+. The dramatic morphological alterations of microglia from multi-branched to amoeboid, the microgliosis, as well as the modulation of gene expression profiles demonstrated a strong activation of microglia and neuroinflammation triggered by environmental levels of Cd2+. Together, our study points to the developmental toxicity of Cd in inducing CNS impairment and neuroinflammation thereby providing visualized etiological evidence of this heavy metal induced neurodevelopmental disorders. It's tempting to speculate that this research model might represent a promising tool not only for understanding the molecular mechanisms of Cd-induced neurotoxicity, but also for developing pharmacotherapies to mitigate the neurological damage resulting from exposure to Cd, and other neurotoxicants.
Collapse
Affiliation(s)
- Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| | - Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Hao Gao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Junru Liu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Cong Yuan
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
7
|
Giraud-Billoud M, Campoy-Diaz AD, Dellagnola FA, Rodriguez C, Vega IA. Antioxidant Responses Induced by Short-Term Activity–Estivation–Arousal Cycle in Pomacea canaliculata. Front Physiol 2022; 13:805168. [PMID: 35185614 PMCID: PMC8847974 DOI: 10.3389/fphys.2022.805168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Long-term estivation (45 days) in the apple snail Pomacea canaliculata induces an increase of non-enzymatic antioxidants, such as uric acid and reduced glutathione (GSH), which constitutes an alternative to the adaptive physiological strategy of preparation for oxidative stress (POS). Here, we studied markers of oxidative stress damage, uric acid levels, and non-enzymatic antioxidant capacity, enzymatic antioxidant defenses, such as superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), and transcription factors expression [forkhead box protein O (FOXO), hypoxia-inducible factor-1 alpha (HIF1α), and nuclear factor erythroid 2-related factor 2 (Nrf2)] in control active animals, 7-day estivating and aroused snails, in digestive gland, gill, and lung tissue samples. In the digestive gland, SOD and CAT activities significantly increased after estivation and decreased during arousal. Meanwhile, GST activity decreased significantly during the activity–estivation–arousal cycle. Gill CAT activity increased significantly at 7 days of estivation, and it decreased during arousal. In the lung, the CAT activity level increased significantly during the cycle. FOXO upregulation was observed in the studied tissues, decreasing its expression only in the gill of aroused animals during the cycle. HIF1α and Nrf2 transcription factors decreased their expression during estivation in the gill, while in the lung and the digestive gland, both transcription factors did not show significant changes. Our results showed that the short-term estivation induced oxidative stress in different tissues of P. canaliculata thereby increasing overall antioxidant enzymes activity and highlighting the role of FOXO regulation as a possible underlying mechanism of the POS strategy.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
- *Correspondence: Maximiliano Giraud-Billoud,
| | - Alejandra D. Campoy-Diaz
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
| | - Federico A. Dellagnola
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A. Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
8
|
Prieto GI. Caution ahead: reassessing the functional morphology of the respiratory organs in amphibious snails. PeerJ 2021; 9:e12161. [PMID: 34616620 PMCID: PMC8459726 DOI: 10.7717/peerj.12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
After a long hiatus, interest in the morphology of the respiratory organs in apple snails (Ampullariidae, Caenogastropoda) and its functional and evolutionary bearings is making a comeback. The variability in the morphology of the gill and lung and its link to different lifestyles and patterns of air dependency within the Ampullariidae make research on the morphology of the respiratory organs particularly suitable for approaching the evolution of terrestriality in animals. Additionally, morphology is a valuable source of hypotheses regarding the several functions the ampullariid respiratory organs have besides respiration. However, this is an underexplored field that only recently has incorporated ultrastructural and three-dimension visualization tools and in which more research is much needed, particularly, comparisons between species representing the diversity within the Ampullariidae. In this paper, I examine Mueck, Deaton & Lee’s (2020a) assessment of the morphology of the gill and lung of Pomacea maculata and compare it with earlier and contemporary studies on other ampullariid species. I show that Mueck, Deaton & Lee’s paper combines significant morphological misinterpretations, conceptual and terminological mistakes, and crucial literature omissions. I also reinterpret their results and point to the similarities and differences between them and available data on other ampullariids.
Collapse
Affiliation(s)
- Guido I Prieto
- Department of Philosophy I, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|