1
|
Abdur Rahman M, Haque S, Athikesavan MM, Kamaludeen MB. A review of environmental friendly green composites: production methods, current progresses, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16905-16929. [PMID: 36607568 DOI: 10.1007/s11356-022-24879-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The growing concern about environmental damage and the inability to meet the demand for more versatile, environmentally friendly materials has sparked increasing interest in polymer composites derived from renewable and biodegradable plant-based materials, mainly from forests. These composites are mostly referred to as "green" and they can be widely employed in many industrial applications. Green composites are less harmful to the environment and could be potential substitutes for petroleum-based polymeric materials. It is helpful to limit usage of fossil oil assets by developing biopolymer matrices such as cellulose-reinforced biocomposites using renewable assets such as plant oils, carbohydrates, and proteins. This paper focuses on green composites processing utilizing a variety of naturally available resources, sustainable materials which are not detrimental to the environment, new scientific signs of progress in achieving green sustainable development, as well as nanotechnology and its environmental consequences. Additionally, the environmental impacts of different composite materials are examined in this paper, along with their production from eco-friendly materials. Moreover, the manufacturing aspects of green composites and some concerns related to their production are also discussed. The merits of green composite materials and valid reasons why they are a valuable substitute for the traditionally used composite materials are also covered.
Collapse
Affiliation(s)
- M Abdur Rahman
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India.
| | - Serajul Haque
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| | - Muthu Manokar Athikesavan
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| | - Mohamed Bak Kamaludeen
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| |
Collapse
|
2
|
Kumar Sarangi P, Subudhi S, Bhatia L, Saha K, Mudgil D, Prasad Shadangi K, Srivastava RK, Pattnaik B, Arya RK. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8526-8539. [PMID: 35554831 DOI: 10.1007/s11356-022-20669-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2022] [Indexed: 05/27/2023]
Abstract
The major global concern on energy is focused on conventional fossil resources. The burning of fossil fuels is an origin of greenhouse gas emissions resulting in the utmost threat to the environment and subsequently which leads to global climate changes. As far as sustainability is concerned, fuels and materials derived from organic or plant wastes overcome this downside establishing the solution to the fossil resource crisis. In this context, exploration of agricultural residue appears to be a suitable alternative of non-renewable resources to support the environmental feasibility and meet the high energy crisis. The use of agricultural waste as a feedstock for the biorefinery approach emerges to be an eco-friendly process for the production of biofuel and value-added chemicals, intensifying energy security. Therefore, a prospective choice of this renewable biomass for the synthesis of green fuel and other green biochemicals comes up with a favorable outcome in terms of cost-effectiveness and sustainability. Exploiting different agricultural biomass and exploring various biomass conversion techniques, biorefinery generates bioenergy in a strategic way which eventually fits in a circular bioeconomy. Sources and production of agricultural waste are critically explained in this paper, which provides a path for further value addition by various technologies. Biorefinery solutions, along with a life cycle assessment of agricultural waste biomass toward a wide array of value-added products aiding the bioeconomy, are summarized in this paper.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795004, India
| | - Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Latika Bhatia
- Department of Microbiology & Bioinformatics, Atal Bihari Vajpayee University, Bilaspur, Chhattisgarh, India
| | - Koel Saha
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Divya Mudgil
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushiknonda, Visakhapatnam, 530045, A.P, India.
| | - Bhabjit Pattnaik
- Department of Botany, Christ College, Cuttack, 753008, Odisha, India
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar NIT, Jalandhar, India
| |
Collapse
|
3
|
Conversion of Plastic Waste into Supports for Nanostructured Heterogeneous Catalysts: Application in Environmental Remediation. SURFACES 2021. [DOI: 10.3390/surfaces5010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastics are ubiquitous in our society and are used in many industries, such as packaging, electronics, the automotive industry, and medical and health sectors, and plastic waste is among the types of waste of higher environmental concern. The increase in the amount of plastic waste produced daily has increased environmental problems, such as pollution by micro-plastics, contamination of the food chain, biodiversity degradation and economic losses. The selective and efficient conversion of plastic waste for applications in environmental remediation, such as by obtaining composites, is a strategy of the scientific community for the recovery of plastic waste. The development of polymeric supports for efficient, sustainable, and low-cost heterogeneous catalysts for the treatment of organic/inorganic contaminants is highly desirable yet still a great challenge; this will be the main focus of this work. Common commercial polymers, like polystyrene, polypropylene, polyethylene therephthalate, polyethylene and polyvinyl chloride, are addressed herein, as are their main physicochemical properties, such as molecular mass, degree of crystallinity and others. Additionally, we discuss the environmental and health risks of plastic debris and the main recycling technologies as well as their issues and environmental impact. The use of nanomaterials raises concerns about toxicity and reinforces the need to apply supports; this means that the recycling of plastics in this way may tackle two issues. Finally, we dissert about the advances in turning plastic waste into support for nanocatalysts for environmental remediation, mainly metal and metal oxide nanoparticles.
Collapse
|