1
|
Wen Q, Yang L, Gong H, Yu J, Wei B, Zhao S, Tu D, Yin S, Wang T. Characteristics, sources, and risk assessment of thallium and associated with metal(loid)s in the Yarlung Tsangpo River Basin, southern Tibetan Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8226-8238. [PMID: 36056284 DOI: 10.1007/s11356-022-22803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The Tibetan Plateau (TP) is known as the water tower of Asia, and the water quality has long been a focus of public concern, especially in the Yarlung Tsangpo River Basin (YTRB), a unique area that is climate-sensitive, geologically complex, eco-fragile, and densely populated. Thallium (Tl) is a typical metal that is more toxic than Pb, Cd, and As and often occurs in sulfide minerals. Although large-scale polymetallic sulfide mineralization developed in the YTRB, the geochemical dispersion and potential risk of Tl in aquatic environments of the YTRB remain poorly understood. In this study, the concentration, distribution, source, and health risk of Tl and associated metal(loid)s in the hot springs and surface water in the YTRB were systematically analyzed. The results showed that the trace elements (Cd, Cr, Zn, Cu, Al, Sr, Ni, Co, Mn, Pb) in water environments are within the recommended limits, except for Tl and As. Principal component analysis (PCA) and correlation analysis (CA) showed that the elements of Tl and As were positively related to each other in either both hot spring water and surface water, indicating their common origin. Spatial variations suggested that high levels of Tl and As observed in the north YTRB, which may be relevant to the reduction-dissolution of Tl (As)-bearing minerals and the magmatic hydrothermal system formed in the shallow part of the northern YTRB. Furthermore, source apportionment identified natural sources of Cu, Ni, Cr, Co, Mn, Zn, and Cd and anthropogenic inputs of Al and Pb. Exposure assessment studies have found that ingestion is the primary route of As and Tl exposure to local population, and balneological and bathing purposes do not constitute a human health concern. This study offers valuable insights into the risk of naturally occurring Tl enrichment being hidden in As-rich hydrosphere in the YTRB and other regions with similar geoenvironmental contexts.
Collapse
Affiliation(s)
- Qiqian Wen
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongqiang Gong
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850030, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China.
| | - Shengcheng Zhao
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850030, China
| | - Dan Tu
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850030, China
| | - Shuhui Yin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ting Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Rashid A, Ayub M, Khan S, Ullah Z, Ali L, Gao X, Li C, El-Serehy HA, Kaushik P, Rasool A. Hydrogeochemical assessment of carcinogenic and non-carcinogenic health risks of potentially toxic elements in aquifers of the Hindukush ranges, Pakistan: insights from groundwater pollution indexing, GIS-based, and multivariate statistical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75744-75768. [PMID: 35661301 DOI: 10.1007/s11356-022-21172-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/25/2022] [Indexed: 05/16/2023]
Abstract
Globally, potentially toxic elements (PTEs) and bacterial contamination pose health hazards, persistency, and genotoxicity in the groundwater aquifer. This study evaluates PTE concentration, carcinogenic and noncarcinogenic health hazards, groundwater quality indexing (GWQI-model), source provenance, and fate distribution in the groundwater of Hindukush ranges, Pakistan. The new estimates of USEPA equations record new research dimensions for carcinogenic and noncarcinogenic hazards. The principal component analysis (PCA), mineral phases, and spatial distribution determine groundwater contamination and its impacts. The average concentrations of PTEs, viz., Cd, Cu, Co, Fe, Pb, and Zn, were 0.06, 0.27, 0.07, 0.55, 0.05, and 0.19 mg/L, and E. coli, F. coli, and P. coli were 27.5, 24.0, and 19.0 CFU/100 ml. Moreover, the average values of basic minerals, viz., anhydrite, aragonite, calcite, dolomite, gypsum, halite, and hydroxyl apatite, were 0.4, 2.4, 2.6, 5.1, 0.6, and - 4.0, 11.2, and PTE minerals like monteponite, tenorite, cuprite, cuprous ferrite, cupric ferrite, ferrihydrite, goethite, hematite, lepidocrocite, maghemite, magnetite, massicot, minium, litharge, plattnerite, and zincite were - 5.5, 2.23, 4.65, 18.56, 20.0, 4.84, 7.54, 17.46, 6.66, 9.67, 22.72, - 3.36, 22.9, 3.16, - 18.0, and 1.46. The groundwater showed carcinogenic and non-carcinogenic health hazards for children and adults. The GWQI-model showed that 58.3% of samples revealed worse water quality. PCA revealed rock weathering, mineral dissolution, water-rock interaction, and industrial effluents as the dominant factors influencing groundwater chemistry. Carbonate weathering and ion exchange play vital roles in altering CaHCO3 type to NaHCO3 water. In this study, E. coli, F. coli, P. coli, EC, turbidity, TSS, PO43─, Na+, Mg+2, Ca+2, Cd, Co, Fe, and Pb have exceeded the World Health Organization (WHO) guidelines. The carcinogenic and non-carcinogenic impacts of PTEs and bacterial contamination declared that the groundwater is unfit for drinking and domestic purposes.
Collapse
Affiliation(s)
- Abdur Rashid
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan.
| | - Muhammad Ayub
- Department of Botany, Hazara University, PO 21300, Mansehra, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, PO 25120, Pakistan
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| | - Xubo Gao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Chengcheng Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh, l1451, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación Y Mejora de La Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Atta Rasool
- Department of Environmental Sciences, COMSATS University, Islamabad (CUI), Vehari, 61100, Pakistan
| |
Collapse
|
3
|
Abbasi A, Algethami M, Bawazeer O, Zakaly HMH. Distribution of natural and anthropogenic radionuclides and associated radiation indices in the Southwestern coastline of Caspian Sea. MARINE POLLUTION BULLETIN 2022; 178:113593. [PMID: 35344732 DOI: 10.1016/j.marpolbul.2022.113593] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The distribution pattern of natural radionuclides (226Ra, 232Th, and 40K) and anthropogenic radionuclide (137Cs) in surface sediment samples from the southwestern coastline of the Caspian Sea were determined to estimate the radiation hazard indices using a high-purity germanium HPGe gamma-ray detector. The activity concentrations of the sediment samples ranged from 22.5 ± 1.0 to 47.4 ± 2.2 Bq kg-1 dry weight (dw) for 226Ra, 6.5 ± 0.1 to 18.7 ± 0.7 Bq kg-1 dw for 232Th, 559.9 ± 30.9 to 233.2 ± 19.4 Bq kg-1 dw for 40K, and 0.9 MDL (minimum detection limit) to 2.7 ± 0.1 Bq kg-1 dw for 137Cs. Based on the measured values, radiological risk indices were estimated. The mean values for absorbed dose rate, ambient dose equivalent rate, and excess lifetime cancer risk, were calculated as 35.7 nGy h-1, 47.9 nSv h-1, and 0.2, respectively.
Collapse
Affiliation(s)
- Akbar Abbasi
- Faculty of Engineering, University of Kyrenia, via Mersin 10, Kyrenia, TRNC, Turkey.
| | - Merfat Algethami
- Physics Department, Faculty of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Omemh Bawazeer
- Medical Physics Department, Faculty of Applied Sciences, Umm-al qura University, Makkah, Saudi Arabia
| | - Hesham M H Zakaly
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg 620002, Russia; Physics Department, Faculty of Science, Al-Azhar University, 71524 Assuit, Egypt.
| |
Collapse
|
4
|
Egbueri JC, Enyigwe MT, Ayejoto DA. Modeling the impact of potentially harmful elements on the groundwater quality of a mining area (Nigeria) by integrating NSFWQI, HERisk code, and HCs. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:150. [PMID: 35129689 DOI: 10.1007/s10661-022-09789-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
With excess potentially harmful elements (PHEs), drinking water is marked unsuitable and could pose some health risks when ingested or absorbed by humans. Different age groups are exposed to varied risk levels of PHEs. Analyzing the health risks of PHEs for several age groups could provide detailed insights for effective water resources management. No known study in Ameka Pb-Zn mine province (Nigeria) investigated the health risks of PHEs in water resources for several age groups. Therefore, in this paper, the carcinogenic and non-carcinogenic health risks (due to ingestion and dermal contact) of PHEs in groundwater resources of this area were investigated for nine age groups. To achieve its aim, this study integrated novel HERisk code, NSFWQI (national sanitation foundation water quality index), and hierarchical clusters (HCs) in modeling the groundwater quality. Standard elemental composition analysis revealed that the groundwater is polluted with PHEs. The NSFWQI indicated that 15% of the analyzed water samples have moderate water quality whereas 85% are unsuitable for drinking. The HERisk code, which considered nine age groups (1 to < 2 years, 2 to < 3 years, 3 to < 6 years, 6 to < 11 years, 11 to < 16 years, 16 to < 18 years, 18 to < 21 years, 21 to < 65 years, and > 65 years), revealed that all the samples pose high chronic and cancer risks to all the age groups due to oral ingestion. However, it was realized that age groups 1 to < 16 and > 65 are posed with higher risks than age groups 18 to < 65. Overall, it was realized that all the age groups are far more exposed to ingest or absorb Se, Co, Cd, Se, As, Ni, and Pb than Cu, Fe, and Zn. Nevertheless, the health risks due to dermal absorption are far lower than the risks due to oral ingestion. Conclusively, children and aging people are more predisposed to the health threats than middle-aged populations. HCs and geospatial maps aided the spatiotemporal analysis of the groundwater quality.
Collapse
Affiliation(s)
- Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Anambra State, Uli, Nigeria.
| | - Monday T Enyigwe
- Department of Geology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Daniel A Ayejoto
- Department of Chemistry, University of Lagos, Akoka/Yaba, Lagos State, Nigeria
| |
Collapse
|
5
|
Amini Birami F, Moore F. Arud granitic intrusion, the most probable source of radiation in high background natural radiation areas of Ramsar, North Iran. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|