1
|
Wang C, Li R, Guo W. Design and screening of bimetallic catalysts for nitric oxide reduction by CO: a study of kinetic Monte Carlo simulation based on first-principles calculations. Phys Chem Chem Phys 2024; 26:23754-23765. [PMID: 39229742 DOI: 10.1039/d4cp02613f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nitric oxide (NO) emissions pose a significant environmental challenge, and the development of effective catalysts for NO reduction is crucial. This study investigates the potential of striped bimetallic catalysts for NO reduction by CO using kinetic Monte Carlo (KMC) simulations based on first-principles calculations. The simulations reveal that the activity on the striped Ni-Pt-Pt (111) surface is 1-2 orders of magnitude higher than that on the terraced Ni-Pt-Pt (111) surface at the same temperatures, demonstrating the importance of defect engineering. Sensitivity analysis identifies CO oxidation as the rate-determining step, although the 2N* association barrier is higher than CO oxidation, highlighting the need to consider reaction conditions in kinetic simulations. Volcano plots based on the formation energies of NO* and CO* successfully predict the striped Ni-Pd-Pd (111) and Ni-Rh-Rh (111) surfaces as optimal catalysts, which were further validated through DFT calculations and ab initio molecular dynamics simulations. This study offers valuable insights for designing high-performance bimetallic catalysts for NO reduction and underscores the importance of considering specific reaction conditions in kinetic simulations.
Collapse
Affiliation(s)
- Caimu Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Renyi Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Guo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
- Frontiers Science Center for High Energy Material (MOE), Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Sun XY, Wang SD, Chen JY, Ma TM, He SG, Li XN. Catalytic Conversion of NO and CO by Noble-Metal-Free Copper-Vanadium Oxide Cluster Anions CuVO 3,4. J Phys Chem Lett 2024; 15:9043-9050. [PMID: 39194150 DOI: 10.1021/acs.jpclett.4c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Herein, by using state-of-the-art mass spectrometry, we demonstrated experimentally that the bimetallic copper-vanadium oxide cluster anions CuVO3,4- can catalyze the reduction of NO by CO into N2O and CO2. Note that the catalysis of NO reduction by CO has been rarely established in the gas phase and noble-metal containing clusters were commonly emphasized. Benefiting from quantum-chemical calculations, the Cu-V synergistic effect that both metal atoms work energetically to favor NO adsorption, N-N coupling, and CO oxidation by facilitating electron transfer can be understood at a strictly molecular level. Theoretical results demonstrated that the precaptured NO molecule encourages the adsorption of the second NO by electron donation. This finding deepens our understanding on NO reduction that NO functions not only as a reactant but also as a promoter during the reactions. This discovery could be helpful to permeate the nature and mechanism of active sites on related copper-vanadium heterogeneous catalyst used in real-life NO reduction.
Collapse
Affiliation(s)
- Xin-Yue Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Si-Dun Wang
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Jin-You Chen
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
3
|
Bai Y, Miao C, Wang H, Wu Z. IrSn Bimetallic Clusters Confined in MFI Zeolites for CO Selective Catalytic Reduction of NO x in the Presence of Excess O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11812-11821. [PMID: 38897924 DOI: 10.1021/acs.est.4c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
We developed a simple strategy for preparing IrSn bimetallic clusters encapsulated in pure silicon zeolites via a one-pot hydrothermal synthesis by using diethylamine as a stabilizing agent. A series of investigations verified that metal species have been confined successfully in the inner of MFI zeolites. IrSn bimetallic cluster catalysts were efficient for the CO selective catalytic reduction of NOx in the presence of excess O2. Furthermore, the 13CO temperature-programmed surface reaction results demonstrated that NO2 and N2O could form when most of the CO was transformed into CO2 and that Sn modification could passivate CO oxidation on the IrSn bimetallic clusters, leading to more reductants that could be used for NOx reduction at high temperatures. Furthermore, SO2 can also influence the NOx conversion by inhibiting the oxidation of CO. This study provides a new strategy for preparing efficient environmental catalysts with a high dispersion of metal species.
Collapse
Affiliation(s)
- Yarong Bai
- Key laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resources Science, Zhejiang University, Hangzhou 310058, PR China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler Furnace Flue Gas Pollution Control, Hangzhou 310058, PR China
| | - Chuhan Miao
- Key laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resources Science, Zhejiang University, Hangzhou 310058, PR China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler Furnace Flue Gas Pollution Control, Hangzhou 310058, PR China
| | - Haiqiang Wang
- Key laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resources Science, Zhejiang University, Hangzhou 310058, PR China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler Furnace Flue Gas Pollution Control, Hangzhou 310058, PR China
| | - Zhongbiao Wu
- Key laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resources Science, Zhejiang University, Hangzhou 310058, PR China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler Furnace Flue Gas Pollution Control, Hangzhou 310058, PR China
| |
Collapse
|
4
|
Radina AD, Baidyshev VS, Chepkasov IV, Matsokin NA, Altalhi T, Yakobson BI, Kvashnin AG. Theoretical study of adsorption properties and CO oxidation reaction on surfaces of higher tungsten boride. Sci Rep 2024; 14:12788. [PMID: 38834596 DOI: 10.1038/s41598-024-63676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024] Open
Abstract
Most modern catalysts are based on precious metals and rear-earth elements, making some of organic synthesis reactions economically insolvent. Density functional theory calculations are used here to describe several differently oriented surfaces of the higher tungsten boride WB5-x, together with their catalytic activity for the CO oxidation reaction. Based on our findings, WB5-x appears to be an efficient alternative catalyst for CO oxidation. Calculated surface energies allow the use of the Wulff construction to determine the equilibrium shape of WB5-x particles. It is found that the (010) and (101) facets terminated by boron and tungsten, respectively, are the most exposed surfaces for which the adsorption of different gaseous agents (CO, CO2, H2, N2, O2, NO, NO2, H2O, NH3, SO2) is evaluated to reveal promising prospects for applications. CO oxidation on B-rich (010) and W-rich (101) surfaces is further investigated by analyzing the charge redistribution during the adsorption of CO and O2 molecules. It is found that CO oxidation has relatively low energy barriers. The implications of the present results, the effects of WB5-x on CO oxidation and potential application in the automotive, chemical, and mining industries are discussed.
Collapse
Affiliation(s)
- Aleksandra D Radina
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Viktor S Baidyshev
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Ilya V Chepkasov
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Nikita A Matsokin
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Tariq Altalhi
- Chemistry Department, Taif University, Al Hawiyah, 26571, Taif, Saudi Arabia
| | - Boris I Yakobson
- Chemistry Department, Taif University, Al Hawiyah, 26571, Taif, Saudi Arabia
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Alexander G Kvashnin
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.
| |
Collapse
|
5
|
Wang X, Ding C, Long H, Wu Y, Zhao H, Jiang F, Chang R, Xue S, Shen M, Yang X. Catalytic reduction of nitrogen monoxide using iron-nickel oxygen carriers derived from electroplating sludge: Novel method for the collaborative emission decrease of polluting gases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172315. [PMID: 38593874 DOI: 10.1016/j.scitotenv.2024.172315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
The valorization of electroplating sludge (ES) for high added value presents greater economic and environmental benefits than conventional treatment methods such as thermal processing, solidification, and landfill. Inspired by the mechanism of chemical looping combustion (CLC), this study developed a novel cost-effective method for denitrification by preparing FeNi-OCs from ES to achieve the synergistic reduction of CO and NO emissions. The phase structure, micromorphology, and valence state changes of the FeNi-OC catalyst during the CO-catalyzed reduction of NO and the pathway for catalytic denitrification using FeNi-OCs were analyzed. Results showed that CO could reduce FeNi-OCs to FeNi, and the reduced FeNi was subsequently oxidized back to FeNi-OCs by NO, a process analogous to CLC. During experiments, the simultaneous consumption of CO and NO gases was observed at 350 °C. This phenomenon was highly pronounced at 600 °C, where the CO and NO concentrations decreased from initial values of 8550 and 470 ppm, respectively, to 6719 and 0 ppm, respectively, with conversion rates of 21.41 % and 100 %, respectively. Hence, synergistic emission reduction was achieved. Further experiments also indicated that the addition of 1.5 % ES during iron ore sintering could substantially reduce the CO and NO concentrations in the sintering flue gas from 1268.32 and 244.81 ppm, respectively, to 974.51 and 161.11 ppm, respectively.
Collapse
Affiliation(s)
- Xuchao Wang
- Anhui Province Key Laboratory of Metallurgy Engineering & Resources Recycling, Ma'anshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Chengyi Ding
- Anhui Province Key Laboratory of Metallurgy Engineering & Resources Recycling, Ma'anshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China.
| | - Hongming Long
- Anhui Province Key Laboratory of Metallurgy Engineering & Resources Recycling, Ma'anshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China.
| | - Yuxi Wu
- Anhui Province Key Laboratory of Metallurgy Engineering & Resources Recycling, Ma'anshan, Anhui 243002, China
| | - Hexi Zhao
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Feng Jiang
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Rende Chang
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Sheng Xue
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Mingrui Shen
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Xin Yang
- Anhui Province Key Laboratory of Metallurgy Engineering & Resources Recycling, Ma'anshan, Anhui 243002, China
| |
Collapse
|
6
|
Bai B, Huang Y, Chen J, Lei J, Wang S, Wang J. Ultrathin MnO 2 with strong lattice disorder for catalytic oxidation of volatile organic compounds. J Colloid Interface Sci 2024; 653:1205-1216. [PMID: 37797496 DOI: 10.1016/j.jcis.2023.09.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Catalytic oxidation proves the most promising technology for volatile organic compounds (VOCs) abatement. Lattice disorder plays a crucial role in the catalytic activity of catalysts due to the exposure of more active sites. Inspired by this, we successfully prepared a series of ε-MnO2 with different lattice disorder defects via several simple methods and applied them to the catalytic oxidation of two typical VOCs (toluene and acetone). Various characterizations and performance tests confirm that the ultrathin (1.4-1.8 nm) structure and strong lattice disorder can enhance the low temperature reduction and reactive oxygen species, so that MnO2-R exhibits excellent toluene and acetone oxidation activities. In-situ DRIFTS tests were carried out to detect reaction intermediates in the toluene and acetone oxidation process on the catalyst surface. Moreover, we propose a possible synergistic mechanism for toluene and acetone mixtures catalytic oxidation. This work reveals the important role of lattice disorder defects in the catalytic oxidation of VOCs on Mn-based catalysts, and deepens the insights of the reaction path in toluene and acetone catalytic oxidation.
Collapse
Affiliation(s)
- Baobao Bai
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Ying Huang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jiajia Chen
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Juan Lei
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030018, Shanxi, PR China.
| | - Shuang Wang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Jiancheng Wang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
7
|
Li Z, Zhang Y, Jiang Q, Xu L, Han ZK, Baiker A, Li G. CuCeO x/CuO Catalyst Derived from the Layered Double Hydroxide Precursor: Catalytic Performance in NO Reduction with CO in the Presence of Water and Oxygen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6957-6963. [PMID: 37162390 DOI: 10.1021/acs.langmuir.2c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Valencies of metal species and lattice defects, such as oxygen vacancies, play a pivotal role in metal oxide-catalyzed reactions. Herein, we report a promising synthetic strategy for preparing CuO-supported CuCeOx catalysts (CuCeOx/CuO) by calcination of a hydrotalcite precursor [Cu6Ce2(OH)16]CO3·nH2O. The structural and chemical properties of catalysts were characterized by XRD, ICP-AES, TEM, TPR, NH3-TPD, XPS, Raman spectroscopy, and N2 adsorption, which revealed that the thermal pretreatment in an oxidative atmosphere caused segregation and reconstitution processes of the precursor, resulting in a mesoporous catalyst consisting of well-dispersed CuO-supported CuCeOx clusters of 1.8-3.2 nm in size with a high population of oxygen vacancies. The as-prepared catalyst shows excellent catalytic performance in the reduction of NO by CO in the absence as well as in the presence of water and oxygen. This behavior is attributed to its high oxygen defect concentration facilitating the interplay of the redox equilibria between Cu2+ and reduced copper species (Cu+/Cu0) and (Ce4+/Ce3+). The high surface population of oxygen vacancies and in situ-generated metallic copper species have been evidenced by Raman spectroscopy and X-ray photoelectron spectroscopy. The layered double hydroxide-derived CuCeOx/CuO also showed good water tolerance and long-term stability. In situ infrared spectroscopy investigations indicated that adsorbed hyponitrite species are the main reaction intermediates of the NO conversion as also corroborated by theoretical simulations.
Collapse
Affiliation(s)
- Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Qike Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Liangliang Xu
- Electrical and Biomedical Engineering Multidisciplinary Computational Laboratory, Hanyang University Ringgold Standard Institution, Seoul 04763, Republic of Korea
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Alfons Baiker
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Hönggerberg, HCl, CH-8093 Zurich, Switzerland
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Choi KI, Yadav D, Jung J, Park E, Lee KM, Kim T, Kim J. Noble Metal Nanoparticles Decorated Boron Nitride Nanotubes for Efficient and Selective Low-Temperature Catalytic Reduction of Nitric Oxide with Carbon Monoxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10670-10678. [PMID: 36780665 DOI: 10.1021/acsami.2c20985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parallel to CO2 emission, NOx emission has become one of the menacing problems that seek a simple, durable, and high-efficiency deNOx catalyst. Herein, we demonstrated simple syntheses of platinum group metal nanoparticle-decorated f-BNNT (PGM = Pd, Pt, and Rh, and f-BNNT stands for -OH-functionalized boron nitride nanotubes) as a catalyst for efficient and selective reduction of NO by CO at low-temperature conditions. PGM/f-BNNT with a low amount of noble metal nanoparticles (0.7-0.8 wt %) presents very efficient catalytic activity for NO reduction as well as CO oxidation during their removal process. The removal efficiencies of NO and CO with Pd/f-BNNT, Pt/f-BNNT, and Rh/f-BNNT catalysts were investigated under various temperatures, flow rates, and reaction times, respectively. For most cases, NO catalytic reduction with CO reaction was >99% at a temperature as low as ∼200 °C. The catalyst robustness and efficiency were also verified by presenting almost 100% conversion of NO using a Rh/f-BNNT catalyst, which was aged under humid air at 600 and 700 °C for 24 h, respectively. The synergic effect of the catalytic efficacy of the well-dispersed noble metal nanoparticles and the excellent surface properties of BNNT are reasons for the high selectivity and catalytic property at a low temperature. On the basis of this investigation, we demonstrated that the noble metal nanoparticle-decorated f-BNNT catalysts are possible to save expensive PGM catalysts, such as Pt, Pd, and Rd, as much as 100 times while presenting similar or better catalytic performance for simultaneous NO and CO removals.
Collapse
Affiliation(s)
- Ki-In Choi
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| | - Dolly Yadav
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| | - Junghwan Jung
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| | - Eunkwang Park
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| | - Kyung-Min Lee
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Taejin Kim
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jaewoo Kim
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| |
Collapse
|
9
|
Chen J, Bai B, Lei J, Wang P, Wang S, Li J. Mn3O4 derived from Mn-MOFs with hydroxyl group ligands for efficient toluene catalytic oxidation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Gui R, Yan Q, Xue T, Gao Y, Li Y, Zhu T, Wang Q. The promoting/inhibiting effect of water vapor on the selective catalytic reduction of NO x. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129665. [PMID: 35907283 DOI: 10.1016/j.jhazmat.2022.129665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In the field of nitrogen oxides (NOx) abatement, developing selective catalytic reduction (SCR) catalysts that can operate stably in the practical conditions remains a big challenge because of the complexity and uncertainty of actual flue gas emissions. As water vapor is unavoidable in the actual flue gas, it is indispensable to explore its effect on the performance of SCR catalysts. Many studies have proved that the effects of H2O on de-NOx activity of SCR catalysts were indeed observed during SCR reactions operated under wet conditions. Whether the effect is promotive or inhibitory depends on the reaction conditions, catalyst types and reducing agents used in SCR reaction. This review focuses on the effect of H2O on SCR catalysts and SCR reaction, including promoting effect, inhibiting effect, as well as the effecting mechanism. Besides, various strategies for developing a water-resistant SCR catalyst are also included. We hope that this work can give a more comprehensive insight into the effects of H2O on SCR catalysts and help with the rational design of water-resistant SCR catalysts for further practical application in NOx abatement field.
Collapse
Affiliation(s)
- Rongrong Gui
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Tianshan Xue
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanshan Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yuran Li
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Li T, Li L, Wang J, Wu Y, Wang Y, Li M. Selective catalytic reduction of NO by CO over α-Fe2O3 catalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Zhao F, Shi Y, Xu L, Chen M, Xue Y, Wu CE, Qiu J, Cheng G, Xu J, Hu X. Designing Highly Efficient Cu 2O-CuO Heterojunction CO Oxidation Catalysts: The Roles of the Support Type and Cu 2O-CuO Interface Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3020. [PMID: 36080056 PMCID: PMC9457833 DOI: 10.3390/nano12173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, a series of Cu2O/S (S = α-MnO2, CeO2, ZSM-5, and Fe2O3) supported catalysts with a Cu2O loading amount of 15% were prepared by the facile liquid-phase reduction deposition-precipitation strategy and investigated as CO oxidation catalysts. It was found that the Cu2O/α-MnO2 catalyst exhibits the best catalytic activity for CO oxidation. Additionally, a series of Cu2O-CuO/α-MnO2 heterojunctions with varied proportion of Cu+/Cu2+ were synthesized by further calcining the pristine Cu2O/α-MnO2 catalyst. The ratio of the Cu+/Cu2+ could be facilely regulated by controlling the calcination temperature. It is worth noting that the Cu2O-CuO/α-MnO2-260 catalyst displays the best catalytic performance. Moreover, the kinetic studies manifest that the apparent activation energy could be greatly reduced owing to the excellent redox property and the Cu2O-CuO interface effect. Therefore, the Cu2O-CuO heterojunction catalysts supported on α-MnO2 nanotubes are believed to be the potential catalyst candidates for CO oxidation with advanced performance.
Collapse
Affiliation(s)
- Fen Zhao
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yiyu Shi
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yingying Xue
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Qiu
- Jiangsu Shuangliang Environmental Technology Co., Ltd., Jiangyin 214400, China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jingxin Xu
- State Environmental Protection Key Laboratory of Atmospheric Physical Modeling and Pollution Control, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
13
|
Yan Y, Zhang X, Wei J, Chen M, Bi J, Bao Y. Understanding the Iron-Cobalt Synergies in ZSM-5: Enhanced Peroxymonosulfate Activation and Organic Pollutant Degradation. ACS OMEGA 2022; 7:17811-17821. [PMID: 35664623 PMCID: PMC9161407 DOI: 10.1021/acsomega.2c01031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 06/04/2023]
Abstract
Iron- and cobalt-based heterogeneous catalysts are widely applied for activating peroxymonosulfate (PMS) to degrade organic pollutants. However, few studies have unveiled the clear synergistic mechanism of iron and cobalt in ZSM-5. In this paper, the synergistic mechanism of enhanced PMS activation was revealed by constructing iron and cobalt bimetal modified ZSM-5 zeolite catalysts (FeCo-ZSM-5). The tetracycline hydrochloride (TCH) degradation experiments showed that the catalytic activity of FeCo-ZSM-5-2:3 was much higher than those of Fe-ZSM-5 and Co-ZSM-5. In addition, the influences of catalyst dosage, PMS concentration, reaction temperature, initial pH, and coexisting ions on TCH removal were systematically investigated in this paper. Density functional theory calculations indicated that Co was the main active site for PMS adsorption, and Fe increased the area of Co's positive potential mapped to the electron cloud. The Fe-Co bimetallic doping increased the area of positive potential mapped to the electron cloud and benefited the adsorption of PMS on the catalyst surface, which revealed the synergistic mechanism of bimetals. Electron paramagnetic resonance spectra and quenching experiments showed that sulfate radicals, singlet oxygen, and hydroxyl radicals were involved in the degradation of TCH. Furthermore, liquid chromatography-mass spectrometry was conducted to propose possible degradation pathways. This work provides certain guiding significance in understanding the synergistic effect of heterogeneous catalysts for tetracycline wastewater treatment.
Collapse
Affiliation(s)
- Yaqian Yan
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- The
Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| | - Xinyi Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiahao Wei
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- The
Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| | - Miao Chen
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- The
Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| | - Jingtao Bi
- School
of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Ying Bao
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- The
Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| |
Collapse
|
14
|
Hao M, Li H, Liu W, Ma T, Liang J, Sun K, Matsumoto H, Wang F. Tracking the redox reaction-induced reconstruction of NiAu nanoparticles via environmental scanning transmission electron microscopy. NANOSCALE 2022; 14:4089-4097. [PMID: 35075465 DOI: 10.1039/d1nr07188b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atmosphere-related atom migration and phase reconstruction are an easy way for optimizing the catalytic activity of a bimetallic catalyst. Herein, the structure evolutions of NiAu nanoparticles under oxidative and reductive environments are investigated via combining identical location and in situ environmental scanning transmission electron microscopy. During oxidation, a NiO layer first forms and the redispersion of Ni and Au atoms yields a Ni@Au@NiO multi-shell structure at 350 °C. Further, Ni and Au segregate into an Au-NiO hybrid structure at 600 °C. During reduction, Au atoms disperse over the particle surface forming a NiAu alloy shell with scattered Au atoms/clusters. In situ observation further discloses that the reduction changes the local structural ordering from Ni3Au to NiAu alloy. Very interestingly, the reduced NiAu exhibits promoted activity over oxidized ones for the CO-NO reaction. Density functional theory calculations further reveal the structure-property relationships of CO, NO, and O adsorbates on NiAu alloy surfaces. This study is beneficial for understanding the atmosphere-related evolution behaviors of bimetallic systems, thereby inspiring the catalytic surface optimization.
Collapse
Affiliation(s)
- Ming Hao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China.
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Hao Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Wei Liu
- University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Tianyi Ma
- Centre for Translational Atomaterials, School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China.
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA.
| | - Hiroaki Matsumoto
- Hitachi High-Technologies (Shanghai) Co., Ltd, Shanghai 201203, China
| | - Fei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China.
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
15
|
Huang W, Lin N, Xie X, Chen M, Wan H. NO
reduction on Cu‐based model catalysts studied by
in‐situ
IRAS. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wujun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols−Ethers−Esters, Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 Fujian People's Republic of China
| | - Na Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols−Ethers−Esters, Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 Fujian People's Republic of China
| | - Xiuwen Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols−Ethers−Esters, Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 Fujian People's Republic of China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols−Ethers−Esters, Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 Fujian People's Republic of China
| | - Huilin Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols−Ethers−Esters, Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 Fujian People's Republic of China
| |
Collapse
|
16
|
Xu Z, Li Y, Lin Y, Wang B, Gao P, Zhu T. Enhanced activity and sulfur resistance of Cu- and Fe-modified activated carbon for the reduction of NO by CO from regeneration gas. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01951a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of NO by CO was proposed to be applied for regeneration gas to remove NOx from industrial flue gas with activated carbon purification technology.
Collapse
Affiliation(s)
- Zhicheng Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuran Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuting Lin
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Panting Gao
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
17
|
Wang Y, Jiang Q, Xu L, Han ZK, Guo S, Li G, Baiker A. Effect of the Configuration of Copper Oxide-Ceria Catalysts in NO Reduction with CO: Superior Performance of a Copper-Ceria Solid Solution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61078-61087. [PMID: 34905687 DOI: 10.1021/acsami.1c17807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various copper-ceria-based composites have attracted attention as efficient catalysts for the reduction of NO with CO. In this comparative study, we have examined the catalytic potential of different configurations of copper oxide-ceria catalysts, including catalysts based on a copper-ceria solid solution, copper oxide particles supported on ceria, and ball-milled copper oxide-ceria. The structurally different interfaces between the constituents of these catalysts afforded very different catalytic performances. The solid solution catalyst outperformed the corresponding ceria-supported and ball-milled CuO-CeO2 catalysts. The copper cations incorporated into the ceria lattice strongly improved the activity, N2 selectivity, and water vapor tolerance compared to the other catalyst configurations. The experimental observations are supported by first-principles density functional theory (DFT) studies of the reaction pathway, which indicate that the incorporation of Cu cations into the ceria matrix lowers the energy required for activating the lattice oxygen, thereby enhancing the formation and healing of oxygen vacancies, and thus promoting NO reduction with CO.
Collapse
Affiliation(s)
- Yuhang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qike Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Liangliang Xu
- Department of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Zhong-Kang Han
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia
| | - Song Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alfons Baiker
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Hönggerberg, HCl, CH-8093 Zurich, Switzerland
| |
Collapse
|
18
|
Synergistic Effects of Bimetallic AuPd and La2O3 in the Catalytic Reduction of NO with CO. Catalysts 2021. [DOI: 10.3390/catal11080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bimetallic AuPd nanoparticles supported on TiO2 are known to catalyze the reduction of NO with CO. Here, we investigated the effects of the addition of lanthanum oxide to a AuPd/TiO2 catalyst with a AuPd particle size of 2.1–2.2 nm. The addition of La2O3 enhanced the catalytic activity; for example, at 250 °C, there was 40.9% NO conversion and 49.3% N2-selectivity for AuPd/TiO2, and 100% NO conversion and 100% N2-selectivity for AuPd-La (1:1)/TiO2. The temperature requiring 100% NO conversion dropped from 400 °C to 200 °C by the simple post-impregnation of La2O3 onto AuPd/TiO2. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) combined with modulation excitation spectroscopy (MES) demonstrated that CO adsorption occurs first on Au atoms and then, within 80 s, moves onto Pd atoms. This transformation between two adsorption sites was facilitated by the addition of La2O3.
Collapse
|
19
|
Sun R, Yu F, Wan Y, Pan K, Li W, Zhao H, Dan J, Dai B. Reducing N
2
O Formation over CO‐SCR Systems with CuCe Mixed Metal Oxides. ChemCatChem 2021. [DOI: 10.1002/cctc.202100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruobing Sun
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
- Bingtuan Industrial Technology Research Institute Shihezi University Shihezi 832003 P.R. China
| | - Yinji Wan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Keke Pan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Wenjian Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Huanhuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Jianming Dan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| |
Collapse
|
20
|
Feng C, Liu X, Zhu T, Tian M. Catalytic oxidation of CO on noble metal-based catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24847-24871. [PMID: 33763831 DOI: 10.1007/s11356-021-13008-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Carbon monoxide (CO) catalytic oxidation has gained increasing interest in recent years due to its application prospects. The noble metal catalysts commonly exhibit outstanding CO catalytic oxidation activity. Therefore, this article reviewed the recent research on the application of noble metal catalysts in the catalytic oxidation of CO. The effects of catalyst support, dopant, and physicochemical properties on the catalytic activity for CO oxidation are summarized. The influence of the presence of water vapor and sulfur dioxide in the reaction atmosphere on the catalytic activity in CO oxidation is emphatically discussed. Moreover, this paper discussed several reaction mechanisms of CO catalytic oxidation on noble metal catalysts. Finally, the challenges of removing CO by catalytic oxidation in practical industrial flue gas are proposed.
Collapse
Affiliation(s)
- Chenglin Feng
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Liu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tingyu Zhu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China.
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Mengkui Tian
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
21
|
Li L, Liu S, Jiang R, Ji Y, Li H, Guo X, Jia L, Zhong Z, Su F. Subnanometric Pt on Cu Nanoparticles Confined in Y‐zeolite: Highly‐efficient Catalysts for Selective Catalytic Reduction of NO
x
by CO. ChemCatChem 2021. [DOI: 10.1002/cctc.202001774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang Li
- College of Chemistry and Chemical Engineering Qiqihaer University Qiqihaer 161006 Heilongjiang P. R. China
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shaomian Liu
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ruihuan Jiang
- College of Chemistry and Chemical Engineering Qiqihaer University Qiqihaer 161006 Heilongjiang P. R. China
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongjun Ji
- School of Light Industry Beijing Technology and Business University Beijing 100048 P. R. China
| | - Huifang Li
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiangfeng Guo
- College of Chemistry Guangdong University of Petrochemical Technology Guangdong Maoming 525000 P. R. China
| | - Lihua Jia
- College of Chemistry and Chemical Engineering Qiqihaer University Qiqihaer 161006 Heilongjiang P. R. China
| | - Ziyi Zhong
- College of Engineering Guangdong Technion-Israel Institute of Technology (GTIIT) Shantou 515063 P. R. China
- Technion-Israel Institute of Technology (IIT) Haifa 32000 Israel
| | - Fabing Su
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- Institute of Industrial Chemistry and Energy Technology Shenyang University of Chemical Technology Shenyang 110142 P. R. China
| |
Collapse
|
22
|
Bimetallic AuPd@CeO2 Nanoparticles Supported on Potassium Titanate Nanobelts: A Highly Efficient Catalyst for the Reduction of NO with CO. Catal Letters 2021. [DOI: 10.1007/s10562-020-03502-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Lee KM, Kwon G, Hwang S, Boscoboinik JA, Kim T. Investigation of the NO reduction by CO reaction over oxidized and reduced NiO x/CeO 2 catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01215k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NO reduction by CO reaction was investigated by NiOx/CeO2 catalysts with different pretreatment conditions. Surface area, oxygen defect sites, and CeO2 crystallite size are closely related to the catalytic performance.
Collapse
Affiliation(s)
- Kyung-Min Lee
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Gihan Kwon
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Taejin Kim
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
24
|
Li C, Han Q, Zhu T, Xu W. Catalytic NO Reduction by CO over Ca–Fe Oxides in the Presence of O 2 with Sintering Flue Gas Circulation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chaoqun Li
- Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1, 2nd North Lane, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhen Han
- Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1, 2nd North Lane, ZhongGuanCun, Beijing 100190, China
| | - Tingyu Zhu
- Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1, 2nd North Lane, ZhongGuanCun, Beijing 100190, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenqing Xu
- Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1, 2nd North Lane, ZhongGuanCun, Beijing 100190, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
25
|
Wang X, Maeda N, Meier DM, Baiker A. Potassium Titanate Nanobelts: A Unique Support for Au and AuRh Nanoparticles in the Catalytic Reduction of NO with CO. ChemCatChem 2020. [DOI: 10.1002/cctc.202001401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xianwei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology Dalian University of Technology Dalian 116024 P. R. China
- Department of Physical chemistry University of Geneva Geneva CH 1204 Switzerland
| | - Nobutaka Maeda
- Institute of Materials and Process Engineering (IMPE) Zurich University of Applied Sciences (ZHAW) Winterthur CH 8400 Switzerland
| | - Daniel M. Meier
- Institute of Materials and Process Engineering (IMPE) Zurich University of Applied Sciences (ZHAW) Winterthur CH 8400 Switzerland
| | - Alfons Baiker
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich, Hönggerberg, HCl Zurich CH 8093 Switzerland
| |
Collapse
|
26
|
Souza MS, Araújo RS, Oliveira AC. Optimizing reaction conditions and experimental studies of selective catalytic reduction of NO by CO over supported SBA-15 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30649-30660. [PMID: 32472510 DOI: 10.1007/s11356-020-09391-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Selective catalytic reduction of NO with CO (CO-SCR) was investigated based on optimizing the operating conditions by response surface methodology (RSM) and by appropriately choosing the supported SBA-15 catalysts. The effects of the CO-SCR reaction parameters such as NO:CO molar ratios and oxygen concentrations on the catalytic performance were determined by RSM to evaluate the NO conversion using a first-order polynomial model. The CuO/SBA-15 and Fe2O3/SBA-15 catalysts were synthesized by a hydrothermal method and characterized by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), N2 adsorption-desorption (BET), scanning electron microscopy coupled to energy dispersive X-Ray spectroscopy (SEM-EDS), and Fourier transform infrared spectroscopy (FTIR) to investigate the physicochemical properties of the solids. The RSM showed a very good agreement between predicted values and experimental results with the Pareto analysis confirming the accuracy and reliability of the model. The optimized results indicated the maximum NO conversion at 500 °C with using the NO to CO molar ratio of 1:2 (500:1000 ppm) in the absence of oxygen. Under these conditions, CuO/SBA-15 catalyst achieved 99.7% of NO conversion, whereas Fe2O3/SBA-15 had 98.1% of the catalytic parameter. Catalytic tests in CO-SCR reaction were performed on both catalysts at optimum operating conditions with CuO/SBA-15 exhibiting better performance compared to that of Fe2O3/SBA-15. The results revealed that CuO/SBA-15 was a promising catalyst for CO-SCR of NO due to the well-dispersed CuO phase on SBA-15 surface that allows the solid being more tolerant to the presence of oxygen.
Collapse
Affiliation(s)
- Monique S Souza
- Campus do Itaperi, Centro de Ciências e Tecnologia, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Rinaldo S Araújo
- Campus do Itaperi, Centro de Ciências e Tecnologia, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
- Departamento de Química e Meio Ambiente, Instituto Federal de Educação, Fortaleza, Ceará, Brazil.
| | - Alcineia C Oliveira
- Campus do Pici - Bloco 940, Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|