1
|
Evtyugina MG, Gonçalves C, Alves C, Corrêa SM, Daemme LC, de Arruda Penteado Neto R. Exhaust emissions of gaseous and particle size-segregated water-soluble organic compounds from diesel-biodiesel blends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63738-63753. [PMID: 37059947 PMCID: PMC10172243 DOI: 10.1007/s11356-023-26819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
This study assessed the emissions of gaseous pollutants and particle size distributed water-soluble organics (WSO) from a diesel vehicle fuelled with ultralow sulphur diesel (B0) and 10 (B10), 20 (B20), and 30% (B30) biodiesel blends in a chassis dynamometer tested under transient mode. Particulate emission sampling was carried out in an ultraviolet (UV) test chamber using a 10-stage impactor. Samples were grouped into three size fractions and analysed by gas chromatography-mass spectrometry. Increasing the biofuel ratio up to 30% in the fuel reduced WSO emissions by 20.9% in comparison with conventional diesel. Organic acids accounted for 82-89% of WSO in all tested fuels. Dicarboxylic acids were the most abundant compound class, followed by hydroxy, aromatic, and linear alkanoic acids. Correlations between compounds demonstrated that adding biodiesel to diesel fuel reduces the emissions of nitrogen oxides (NOx), benzene, toluene, ethylbenzene and xylenes (BTEX), methane (CH4), total and nonmethane hydrocarbons (THC and NMHC), and dicarboxylic and hydroxy acids, but increases emissions of carbon dioxide (CO2) and alkanoic and aromatic acids. Emissions of dicarboxylic and hydroxy acids were strongly correlated with the biodiesel content. WSO emissions of coarse and fine (1.0-10 μm) particles decreased with the increasing biofuel content in fuel blend. The total share of ultrafine (0.18-1.0 μm) and nanoparticles (< 0.18 μm) increased in WSOs emissions from B20 and B30 blends, when compared with petrodiesel. The biodiesel content also affected the chemical profile of WSO size fractions.
Collapse
Affiliation(s)
- Margarita G Evtyugina
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Gonçalves
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sérgio M Corrêa
- Faculty of Technology, Rio de Janeiro State University, Resende, RJ, 27537-000, Brazil
| | - Luiz Carlos Daemme
- LACTEC - Technology Institute for Development, Curitiba, PR, 80210-170, Brazil
| | | |
Collapse
|
2
|
The Chinese Spring Festival Impact on Air Quality in China: A Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159074. [PMID: 35897443 PMCID: PMC9330068 DOI: 10.3390/ijerph19159074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
It is known that the sharp change of air pollutants affects air quality. Chinese Spring Festival is the most important holiday for Chinese people, and the celebration of the holiday with fireworks and the movement of people all around the country results in significant change in multiple air pollutant emissions of various sources. As many cities and rural areas suffer from the air pollution caused by firework displays and more residential fuel consumption, there is an urgency to examine the impact of the Chinese Spring Festival on air quality. Hence, this paper firstly gives an overall insight into the holiday's impact on ambient and household air quality in China, both in urban and rural areas. The main findings of this study are: (1) The firework displays affect the air quality of urban and rural atmosphere and household air; (2) the reduction in anthropogenic emissions improves the air quality during the Chinese Spring Festival; (3) the household air in urban areas was affected most by firework burning, while the household air in rural homes was affected most by fuel consumption; and (4) the short-term health impact of air pollution during the holidays also need more concern. Although there have been many publications focused on the holiday's impact on ambient and household air quality, most of them focused on the measurement of pollutant concentration, while studies on the formation mechanism of air pollution, the influence of meteorological conditions, and the health outcome under the effect of the Chinese Spring Festival are rare. In the future, studies focused on these processes are welcomed.
Collapse
|
3
|
Ji W, Zhao K, Liu C, Li X. Spatial characteristics of fine particulate matter in subway stations: Source apportionment and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119279. [PMID: 35405218 DOI: 10.1016/j.envpol.2022.119279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Air in subway stations is typically more polluted than ambient air, and particulate matter concentrations and compositions can vary greatly by location, even within a subway station. However, it is not known how the sources of particulate matter vary between different areas within subway stations, and source-specific health risks in subway stations are unclear. We analyzed the spatial characteristics of particulate matter by source and calculated source-specific health risks on subway platforms and concourses and in station offices by integrating source apportionment with health risk assessments. A total of 182 samples were collected in three areas in six subway stations in Nanjing, China. Enrichment factors and the positive matrix factorization receptor model were used to identify major sources. The carcinogenic and non-carcinogenic health risks to subway workers and passengers were evaluated to determine control priorities. Seven sources of particulate matter were identified in each area, with a total of four subway sources and six outdoor sources over all the areas. The source contributions to total element mass differed significantly from the source contributions to human health risks. Overall, subway sources contributed 48% of total element mass in the station office and 75% and 60% on the concourse and platform, respectively. Subway-derived sources accounted for 54%, 81%, and 71% of non-carcinogenic health risks on station platforms, concourses, and office areas, respectively. The corresponding values for carcinogenic risks were 51%, 86%, and 86%. Among the elements, cobalt had the largest contributions to carcinogenic and non-carcinogenic risks, followed by manganese for non-carcinogenic risks and hexavalent chromium for carcinogenic risks. Reducing emissions from subway sources could effectively protect the health of subway workers and passengers.
Collapse
Affiliation(s)
- Wenjing Ji
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kaijia Zhao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenghao Liu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaofeng Li
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Shan X, Liu L, Li G, Xu K, Liu B, Jiang W. PM 2.5 and the typical components cause organelle damage, apoptosis and necrosis: Role of reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146785. [PMID: 33838376 DOI: 10.1016/j.scitotenv.2021.146785] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
In this research, the organelle damage, apoptosis and necrosis induced by PM2.5, BC and Kaolin were studied using human bronchial epithelial (16HBE) cells. PM2.5, BC and Kaolin all induce cell death, LDH release and excess intracellular ROS generation. For the organelle injuries, Kaolin and high-dose PM2.5 (240 μg/mL) cause lysosomal acidification, but BC causes lysosomal alkalization (lysosomal membrane permeabilization, LMP). BC and Kaolin cause the loss of mitochondrial membrane potential (MMP), while PM2.5 does not. For the cell death mode, PM2.5 causes both apoptosis and necrosis. However only necrosis has been detected in the BC and Kaolin treated groups, indicating the more severe cellular insult. Excess ROS generation is involved in the organelle damage and cell death. ROS contributes to the BC-induced LMP and necrosis, but does not significantly affect the Kaolin-induced MMP loss and necrosis. Therefore, the BC component in PM2.5 may cause cytotoxicity via ROS-dependent pathways, the Kaolin component may damage cells via ROS-independent mechanisms such as strong interaction. The PM2.5-induced apoptosis and necrosis can be partially mitigated after the removal of ROS, indicating the existence of both the ROS-dependent and ROS-independent mechanisms due to the complicated PM2.5 components. BC represents the anthropogenic source component in PM2.5, while Kaolin represents the natural source component. Our results provide knowledge on the toxic mechanisms of typical PM2.5 components at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Xifeng Shan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kexin Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Zhang H, Zhang L, Yang L, Zhou Q, Zhang X, Xing W, Hayakawa K, Toriba A, Tang N. Impact of COVID-19 Outbreak on the Long-Range Transport of Common Air Pollutants in KUWAMS. Chem Pharm Bull (Tokyo) 2021; 69:237-245. [DOI: 10.1248/cpb.c20-00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University
| | - Lulu Zhang
- Graduate School of Medical Sciences, Kanazawa University
| | - Lu Yang
- Graduate School of Medical Sciences, Kanazawa University
| | - Quanyu Zhou
- Graduate School of Medical Sciences, Kanazawa University
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University
| | - Wanli Xing
- Graduate School of Medical Sciences, Kanazawa University
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
6
|
Yuan X, Li G, Yang W, Li D. Distribution characteristics of microbial community structure in atmospheric particulates of the typical industrial city in Jiangsu province, China. Bioengineered 2021; 12:615-626. [PMID: 33565903 PMCID: PMC8806265 DOI: 10.1080/21655979.2021.1885223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, Xuzhou, a typical industrial city in the north of Jiangsu Province, was chosen to investigate the pollution level of atmospheric particulates. The proportion of fine particles (PM2.5) in PM10 is larger than that of coarse particles (about 58%). The physicochemical properties of PM2.5 were analyzed by SEM and EDS. DGGE was used to study the distribution characteristics of bacterial community structure on atmospheric particulates (TSP, PM2.5 and PM10) in different functional areas of Xuzhou city during the winter haze. It was found that the microbial populations of atmospheric particles were mainly divided into three groups: Proteobacteria, Bacteroidetes, and Pachytenella. The community structure of bacteria in fine particle size was more abundant than that in coarse particle size. When haze occurs, the concentration of all kinds of pathogens in fine particle size will increase. Therefore, it is necessary to focus on the monitoring and management of fine particles.
Collapse
Affiliation(s)
- Xingcheng Yuan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou, P.R. China
| | - Guangchao Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou, P.R. China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou, P.R. China
| | - Dan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou, P.R. China
| |
Collapse
|
7
|
Zhu S, Wang Q, Qiao L, Zhou M, Wang S, Lou S, Huang D, Wang Q, Jing S, Wang H, Chen C, Huang C, Yu JZ. Tracer-based characterization of source variations of PM 2.5 and organic carbon in Shanghai influenced by the COVID-19 lockdown. Faraday Discuss 2020; 226:112-137. [PMID: 33241247 DOI: 10.1039/d0fd00091d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Air quality in megacities is significantly impacted by emissions from vehicles and other urban-scale human activities. Amid the outbreak of Coronavirus (COVID-19) in January 2020, strict policies were in place to restrict people's movement, bringing about steep reductions in pollution activities and notably lower ambient concentrations of primary pollutants. In this study, we report hourly measurements of fine particulate matter (i.e., PM2.5) and its comprehensive chemical speciation, including elemental and molecular source tracers, at an urban site in Shanghai spanning a period before the lockdown restriction (BR) (1 to 23 Jan. 2020) and during the restriction (DR) (24 Jan. to 9 Feb. 2020). The overall PM2.5 was reduced by 27% from 56.2 ± 40.9 (BR) to 41.1 ± 25.3 μg m-3 (DR) and the organic carbon (OC) in PM2.5 was similar, averaged at 5.45 ± 2.37 (BR) and 5.42 ± 1.75 μgC m-3 (DR). Reduction in nitrate was prominent, from 18.1 (BR) to 9.2 μg m-3 (DR), accounting for most of the PM2.5 decrease. Source analysis of PM2.5 using positive matrix factorization modeling of comprehensive chemical composition, resolved nine primary source factors and five secondary source factors. The quantitative source analysis confirms reduced contributions from primary sources affected by COVID-19, with vehicular emissions showing the largest drop, from 4.6 (BR) to 0.61 μg m-3 (DR) and the percentage change (-87%) in par with vehicle traffic volume and fuel sale statistics (-60% to -90%). In the same time period, secondary sources are revealed to vary in response to precursor reductions from the lockdown, with two sources showing consistent enhancement while the other three showing reductions, highlighting the complexity in secondary organic aerosol formation and the nonlinear response to broad primary precursor pollutants. The combined contribution from the two secondary sources to PM2.5 increased from 7.3 ± 6.6 (BR) to 14.8 ± 9.3 μg m-3 (DR), partially offsetting the reductions from primary sources and nitrate while their increased contribution to OC, from 1.6 ± 1.4 (BR) to 3.2 ± 2.0 μgC m-3 (DR), almost offset the decrease coming from the primary sources. Results from this work underscore challenges in predicting the benefits to PM2.5 improvement from emission reductions of common urban primary sources.
Collapse
Affiliation(s)
- Shuhui Zhu
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|