1
|
Jia J, Zhang B, Zhang S, Zhang F, Ming H, Yu T, Yang Q, Zhang D. Appropriate control measure design by rapidly identifying risk areas of volatile organic compounds during the remediation excavation at an organic contaminated site. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:136. [PMID: 38483758 DOI: 10.1007/s10653-024-01905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Many organic contaminated sites require on-site remediation; excavation remediation processes can release many volatile organic compounds (VOCs) which are key atmospheric pollutants. It is therefore important to rapidly identify VOCs during excavation and map their risk areas for human health protection. In this study, we developed a rapid analysis and assessment method, aiming to and reveal the real-time distribution of VOCs, evaluate their human health risks by quantitative models, and design appropriate control measures. Through on-site diagonal distribution sampling and analysis, VOCs concentration showed a decreasing trend within 5 m from the excavation point and then increased after 5 m with the increase in distance from the excavation point (p < 0.05). The concentrations of VOCs near the dominant wind direction were higher than the concentrations of surrounding pollutants. In contrast with conventional solid-phase adsorption (SPA) and thermal desorption gas chromatography-mass spectrometry (TD-GC/MS) methods for determining the composition and concentration of VOCs, the rapid measurement of VOCs by photo-ionization detector (PID) fitted well with the chemical analysis and modeling assessment of cancer/non-cancer risk. The targeting area was assessed as mild-risk (PID < 10 ppm), moderate-risk (PID from 10 to 40 ppm), and heavy-risk (PID > 40 ppm) areas. Similarly, the human health risks also decreased gradually with the distance from the excavation point, with the main risk area located in the dominant wind direction. The results of rapid PID assessment were comparable to conventional risk evaluation, demonstrating its feasibility in rapidly identifying VOCs releases and assessing the human health risks. This study also suggested appropriate control measures that are important guidance for personal protection during the remediation excavation process.
Collapse
Affiliation(s)
- Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, People's Republic of China
| | - Ben Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, People's Republic of China
| | - Shuyue Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, People's Republic of China
| | - Fangtao Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, People's Republic of China
| | - Huyang Ming
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, People's Republic of China
| | - Tian Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, People's Republic of China
| | - Qingyun Yang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, People's Republic of China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China.
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, People's Republic of China.
| |
Collapse
|
2
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
3
|
Sarwar F, Alam K, Öztürk F, Koçak M, Malik RN. Appraising the characteristics of particulate matter from leather tanning micro-environments, their respirational risks, and dysfunctions amid exposed working cohorts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1556. [PMID: 38036894 DOI: 10.1007/s10661-023-12180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Leather tanneries are known for chemical laden work environments and pulmonic complaints among workers. This study presents an analysis of tannery micro-environments emphasizing on size-based variation in composition of particulate matter and consequent respiratory dysfunctions. Qualitative (FTIR, SEM-EDX) and quantitative assessment (elemental composition, carbon forms) of PM10 and 2.5 has been employed. For lung function evaluation of workforce, spirometry with ATS proprieties was used. The peak concentrations of both PM10 and 2.5 have been found at PU, FU, and B&S. The LTCR for only Cr is high for both PM2.5 and PM10. HQ was high for Al, Cr, and Mn for both PM sizes. The maximum organic and secondary organic carbon in PM10 was found at FU and in PM2.5 at PU. The varied PM composition included carbohydrate (B&S, WMO), ether (S&S, P&S) and hydroxyl (B&S, S&S, P&S), proteins, polyenes, vinyl groups (S&S, P&S, FU), alcohols (PU and FU), and aldehyde present at PU. These results were armored by high organic and total carbon concentrations for the same sites. Therefore, PM are classified into biogenic (carbonaceous: microbial and animal remains) from PU and WMO, incidental (industrial, mixt physico-chemical character) from PU, FU, WMO, B&S and P&S, and geogenic (crustal mineral dust) from RHT, B&S, PU, and P&S. Furthermore, increase in metal concentrations in PM10 (Cr, Mn, Co, Ni, V, As, Be, Ba, and Cd) and PM2.5 (As, Pb) while TC, OC, and SOC in PM2.5 caused depreciation overall lung function. The exposure to biogenic and incidental PM nature are key cause of pulmonic dysfunction.
Collapse
Affiliation(s)
- Fiza Sarwar
- Department of Earth & Environmental Sciences, Bahria University, Islamabad, Pakistan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fatma Öztürk
- Environmental Engineering Department, Faculty of Engineering, Bolu Abant Izzet Baysal University, Gölköy Campus, Bolu, 14030, Turkey
| | - Mustafa Koçak
- Chemical Oceanography, Institute of Marine Sciences, Middle East Technological University, Ankara, Mersin, Turkey
| | - Riffat Naseem Malik
- Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Cetintepe SP, Hazar M, Bilinmiş I, Aydin Dilsiz S, Basaran N. Evaluation of genotoxicity, oxidative stress and immune parameters of auto-paint workers. ENVIRONMENTAL RESEARCH 2023; 237:116970. [PMID: 37625540 DOI: 10.1016/j.envres.2023.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The automotive industry is a very wide area from the manufacturing of the pieces of the engine, the body, plastics to the assembly of the car. There is a chemical risk at different stages of production because of the requirement of the use of many corrosive and irritant chemicals such as paints, adhesives, acids, and bases. The aim of the study was to determine the genotoxicity, oxidative stress and immune parameters of automotive paint workers in Ankara, Türkiye. DNA damage of workers mainly responsible from the painting of the automotives were evaluated using the alkaline comet assay and the levels of some oxidative stress and immune biomarkers were also investigated. Increased lymphocyte DNA damage and also higher 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) levels were observed while decreased glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR) levels were found in the workers compared to their controls There were no significant differences between the study groups in the levels of interleukin (IL)- 1beta, IL-17, IL-23, Clara cell secretory protein (CC16), tumor necrosis factor-alpha (TNF-alpha), catalase (CAT), and superoxide dismutase (SOD). The results show that occupational exposure to chemicals in automotive industry may cause DNA damage in workers due to oxidative stress.
Collapse
Affiliation(s)
- Sultan Pınar Cetintepe
- Department of Public Health, Faculty of Medicine, Gazi University, 06500, Ankara, Turkiye
| | - Merve Hazar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, 04100, Turkiye
| | - Izem Bilinmiş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Başkent University, Ankara, 06790, Turkiye
| | - Sevtap Aydin Dilsiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Nursen Basaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Başkent University, Ankara, 06790, Turkiye.
| |
Collapse
|
5
|
Azizi M, Abdulrahman YJ, Abdessamad NH, Azzaz AA, Naguib DM. Valorization and characterization of bio-oil from Salvadora persica seed for air pollutant adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53397-53410. [PMID: 36854946 DOI: 10.1007/s11356-023-25566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Salvadora persica (SP) is an important medicinal plant. Numerous articles have been conducted on the leaf, the roots, and the stem of the plant, but there is little information about the seed. Thus, the present work tries to identify the chemical composition of SP seed bio-oil and investigates its use as an adsorbent for cyclohexane removal. This study extracted bio-oil from seeds using different polar and non-polar organic solvents. Two techniques have been used to determine the chemical composition of the bio-oil extracted: FTIR and GC-MS. Results show that the extracted bio-oil presented 13 new major organic bio-compounds in n-hexane and ethanol SP seed extracts. Moreover, the analytical results showed that the two extracts are complex and contained thiocyanic acid, benzene, 3-pyridine carboxaldehyde, benzyl nitrile, ethyl tridecanoate, ethyl oleate, and dodecanoic acid ethyl ester. Additionally, each technique of analysis showed that the extracted bio-oils from SP seeds are rich in non-polar compounds. Indeed, the major fatty acids obtained are pentadecylic acid, myristic acid, lauric acid, oleic acid, margaric acid, and tricosanoic acid. This work provides guidelines for identifying these compounds, among others, and offers a platform for using SP seeds as a herbal alternative for various chemical, industrial, and medical applications. Furthermore, the capacity of SP extracts for air pollution treatment, namely, the removal of cyclohexane in batch mode, was investigated. Results showed that cyclohexane adsorption could be a chemical process involving both monolayer and multilayer adsorption mechanisms. The pores and the grooves on the surface of the SP bio-oil extract helped in adsorbing the cyclohexane with an outstanding maximum removal capacity of about 674.23 mg/g and 735.75 mg/g, respectively, for the ethanol and hexane SP extracts, which is superior to many other recent adsorbents.
Collapse
Affiliation(s)
- Mohamed Azizi
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia.
- Laboratory Desalination and Water Treatment Valorisation (LaDVEN), Water Research and Technologies Center (WRTC), BP 273, 8020, Soliman, Tunisia.
| | - Yousif Jumaa Abdulrahman
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- College of Science Elobied, University of Kordofan, El Obeid, Sudan
| | - NourEl-Houda Abdessamad
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- Laboratory of Wastewater and Environment, Center for Water Research and Technologies (CWRT), BP 273-8020, Soliman, Tunisia
| | - Ahmed Amine Azzaz
- Environnements Dynamiques Et Territoires de La Montagne, Université Savoie Mont-Blanc, EDYTEM, Boulevard de La Mer Caspienne, 73370, Le Bourget-du-Lac, France
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University (BU), Qilwah, Saudi Arabia
| |
Collapse
|
6
|
Tavella RA, Fernandes CLF, Schimith LE, Volcão LM, Dos Santos M, da Silva Júnior FMR. Factors associated with genetic damage - an analysis integrating human populations from Southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74335-74345. [PMID: 35635668 DOI: 10.1007/s11356-022-21089-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Socioeconomic and demographic factors, lifestyle and cultural characteristics may play an important role in the development of genetic damage. This damage represents a potential health risk to an individual and increases the risk of developing negative outcomes. The aim of this study was to investigate the association of a set of factors and genetic damage by gathering data from previously studied populations in southern Brazil. This study analyzed data related to genetic damage and socioeconomic, demographic, and lifestyle variables of 514 individuals aged 18 to 64 years, residing in 8 cities located in the extreme south of the Brazil. A total of twelve factors were considered in the analysis, and of these seven had some association with the frequency of micronucleus or some parameter of the comet assay. Interestingly, age was a factor weakly associated with genetic damage, while skin color, occupational exposure, drug use, exposure to radiation, and the cultural habit of consuming chimarrão were shown to be associated with genetic damage when analyzed using multivariate regression. Therefore, we suggest that yerba mate consumption is a confounding factor and should be considered in cytogenetic studies in the southern region of South America. These results reinforce the need for human biomonitoring studies to include consideration of a broad range of population and cultural characteristics when seeking to identify relevant associations.
Collapse
Affiliation(s)
- Ronan Adler Tavella
- Programa de Pós-Graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos E Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
| | - Caroline Lopes Feijo Fernandes
- Programa de Pós-Graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos E Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
| | - Lucia Emanueli Schimith
- Programa de Pós-Graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
| | - Lisiane Martins Volcão
- Programa de Pós-Graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos E Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
| | - Marina Dos Santos
- Programa de Pós-Graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos E Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Programa de Pós-Graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil.
- Laboratório de Ensaios Farmacológicos E Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande - FURG, Rio Grande, Brazil.
| |
Collapse
|
7
|
Luna-Carrascal J, Quintana-Sosa M, Olivero-Verbel J. Genotoxicity biomarkers in car repair workers from Barranquilla, a Colombian Caribbean City. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:263-275. [PMID: 34839807 DOI: 10.1080/15287394.2021.2000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exposure to chemicals and particles generated in automotive repair shops is a common and underestimated problem. The objective of this study was to assess the genotoxic status of auto repair workers with (1) a questionnaire to gather sociodemographic information and self-reported exposure to hazardous chemicals and (2) measurement of various biochemical parameters. Blood and oral mucosa samples were collected from 174 male volunteers from Barranquilla, Colombia, aged 18-55 years: 87 were active car repairmen and 87 were individuals with no known exposure to hazardous chemicals. Peripheral blood lymphocytes were collected for the comet and cytokinesis-blocking micronucleus (CBMN) assays, while oral mucosal epithelium extracted to quantify micronucleated cells (MNC). DNA was extracted to assess polymorphisms in the DNA repair (XRCC1) and metabolism-related genes (GSTT1 and GSTM1) using PCR-RFLP. DNA damage and frequency of micronuclei (MN) in lymphocytes and oral mucosa were significantly higher in exposed compared to control group. In both groups genotypes and allelic variants for XRCC1 and GSTT1 met the Hardy-Weinberg equilibrium (HWE). In contrast, GSTM1 deviated from HWE. In the exposed group genotypic variants were not correlated with DNA damage or MN presence in cells. DNA damage and occurrence of MN in mucosa and lymphocytes correlated with age and time of service (occupational exposure ≥ 3 years). In summary, workers in car repair shops exhibited genotoxic effects depending upon exposure duration in the workplace which occurred independent of DNA repair XRCC1 gene and metabolism genes GSTT1 and GSTM1. Date demonstrate that health authorities improve air quality in auto repair facilities to avoid occupational DNA damage.
Collapse
Affiliation(s)
- Jaime Luna-Carrascal
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Milton Quintana-Sosa
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
8
|
Nersesyan A, Kundi M, Fenech M, Stopper H, da Silva J, Bolognesi C, Mišík M, Knasmueller S. Recommendations and quality criteria for micronucleus studies with humans. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108410. [PMID: 35690413 DOI: 10.1016/j.mrrev.2021.108410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
Micronucleus (MN) analyses in peripheral blood lymphocytes and exfoliated cells from different organs (mouth, nose, bladder and cervix) are at present the most widely used approaches to detect damage of genetic material in humans. MN are extranuclear DNA-containing bodies, which can be identified microscopically. They reflect structural and numerical chromosomal aberrations and are formed as a consequence of exposure to occupational, environmental and lifestyle genotoxins. They are also induced as a consequence of inadequate intake of certain trace elements and vitamins. High MN rates are associated with increased risk of cancer and a range of non-cancer diseases in humans. Furthermore, evidence is accumulating that measurements of MN could be a useful tool for the diagnosis and prognosis of different forms of cancer and other diseases (inflammation, infections, metabolic disorders) and for the assessment of the therapeutic success of medical treatments. Recent reviews of the current state of knowledge suggest that many clinical studies have methodological shortcomings. This could lead to controversial findings and limits their usefulness in defining the impact of exposure concentrations of hazardous chemicals, for the judgment of remediation strategies, for the diagnosis of diseases and for the identification of protective or harmful dietary constituents. This article describes important quality criteria for human MN studies and contains recommendations for acceptable study designs. Important parameters that need more attention include sufficiently large group sizes, adequate duration of intervention studies, the exclusion of confounding factors which may affect the results (sex, age, body mass index, nutrition, etc.), the evaluation of appropriate cell numbers per sample according to established scoring criteria as well as the use of proper stains and adequate statistical analyses.
Collapse
Affiliation(s)
- A Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - M Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; Universiti Kebangsaan Malaysia, Selangor, Malaysia; Genome Health Foundation, North Brighton, SA, Australia
| | - H Stopper
- Institute of Pharmacology and Toxicology, Wuerzburg University, Wuerzburg, Germany
| | - J da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) & LaSalle University (UniLaSalle), Canoas, RS, Brazil
| | - C Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - M Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - S Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Occupational Exposure in Industrial Painters: Sensitive and Noninvasive Biomarkers to Evaluate Early Cytotoxicity, Genotoxicity and Oxidative Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094645. [PMID: 33925554 PMCID: PMC8123868 DOI: 10.3390/ijerph18094645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
This study aimed to identify sensitive and noninvasive biomarkers of early cyto-genotoxic, oxidative and inflammatory effects for exposure to volatile organic compounds (VOCs) in shipyard painters. On 17 (11 spray and 6 roller) painters (previously characterized for VOCs exposure to toluene, xylenes, ethylbenzene, ethyl acetate) and on 18 controls, we performed buccal micronucleus cytome (BMCyt) assay; Fpg-comet assay on lymphocytes; detection of urinary 8-oxoGua (8-oxo-7,8-dihydroguanine), 8-oxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) and 8-oxoGuo (8-oxo-7,8-dihydroguanosine), and cytokines release on serum. We found induction of cyto-genotoxicity by BMCyt assay and inflammatory effects (IL-6 and TNFα) in roller painters exposed to lower VOC concentrations than spray painters. In contrast, in both worker groups, we found direct and oxidative DNA damage by comet assay (with slightly higher oxidative DNA damage in roller) and significant increase of 8-oxoGuo and decrease of 8-oxodGuo and 8-oxoGua in respect to controls. The cyto-genotoxicity observed only on buccal cells of roller painters could be related to the task's specificity and the different used protective equipment. Although limited by the small number of subjects, the study shows the usefulness of all the used biomarkers in the risk assessment of painters workers exposed to complex mixtures.
Collapse
|
10
|
de Souza DV, de Moraes Malinverni AC, Ribeiro DA. Comments on "Monitoring human genotoxicity risk associated to urban and industrial Buenos Aires air pollution exposure" by Los A Gutiérrez et al. (2020). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4881-4882. [PMID: 32862343 DOI: 10.1007/s11356-020-10630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Daniel Vitor de Souza
- Departments of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Andrea Cristina de Moraes Malinverni
- Departments of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Departments of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
11
|
Sisto R, Cavallo D, Ursini CL, Fresegna AM, Ciervo A, Maiello R, Paci E, Pigini D, Gherardi M, Gordiani A, L'Episcopo N, Tranfo G, Capone P, Carbonari D, Balzani B, Chiarella P. Direct and Oxidative DNA Damage in a Group of Painters Exposed to VOCs: Dose - Response Relationship. Front Public Health 2020; 8:445. [PMID: 32974263 PMCID: PMC7469480 DOI: 10.3389/fpubh.2020.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Volatile organic compounds (VOCs) are present in several working activities. This work is aimed at comparing oxidative stress and DNA damage biomarkers to specific VOCs in the occupational exposure of painters. Dose-response relationships between biomarkers of oxidative stress and of dose were studied. Unmetabolized VOCs and their urinary metabolites were analyzed. Urinary Methylhyppuric acids (MHIPPs, xylenes metabolite), Phenylglyoxylic and Mandelic acid (PGA, MA ethylbenzene metabolites), S-Benzylmercapturic acid (SBMA, toluene metabolite), and S-Phenylmercapturic acid (SPMA, benzene metabolite) were quantified at the end of work-shift. Oxidative stress was determined by: urinary excretion of 8-oxodGuo, 8-oxoGua and 8-oxoGuo and direct/oxidative DNA damage in blood by Fpg-Comet assay. Multivariate linear regression models were used to assess statistical significance of the association between dose and effect biomarkers. The regressions were studied with and without the effect of hOGG1 and XRCC1 gene polymorphisms. Statistically significant associations were found between MHIPPs and both 8-oxoGuo and oxidative DNA damage effect biomarkers measured with the Comet assay. Oxidative DNA damage results significantly associated with airborne xylenes and toluene, whilst 8-oxodGuo was significantly related to urinary xylenes and toluene. Direct DNA damage was significantly associated to SBMA. XRCC1 wild-type gene polymorphism was significantly associated with lower oxidative and total DNA damage with respect to heterozygous and mutant genotypes. The interpretation of the results requires some caution, as the different VOCs are all simultaneously present in the mixture and correlated among them.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Nunziata L'Episcopo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Pasquale Capone
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Damiano Carbonari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Barbara Balzani
- Department of Prevention, Prevention and Safety at Workplace, ASUR Marche, Ancona, Italy
| | - Pieranna Chiarella
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| |
Collapse
|