1
|
Escareño-Torres GA, Pinedo-Escobar JA, De Haro-Del Río DA, Becerra-Castañeda P, Araiza DG, Inchaurregui-Méndez H, Carrillo-Martínez CJ, González-Rodríguez LM. Enhanced degradation of ciprofloxacin in water using ternary photocatalysts TiO 2/SnO 2/g-C 3N 4 under UV, visible, and solar light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40174-40189. [PMID: 37597150 DOI: 10.1007/s11356-023-29166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
In this study, we report on the synthesis of ternary photocatalysts comprising TiO2/SnO2/g-C3N4 for the degradation of ciprofloxacin (CIP) in water. SnO2 nanoparticles were synthesized via the sol-gel method, while g-C3N4 was obtained through melamine calcination. Commercial TiO2 and SnO2 nanopowders were also used. The heterojunctions were synthesized via the wet impregnation method. The photocatalysts were characterized via various techniques, including XRD, TEM, STEM, FTIR, N2 adsorption, UV-Vis DR, and hole tests. Photocatalytic degradation tests of CIP were carried out under UV, visible, and solar radiation. The P25/npA/g-C3N4 (90/10) material exhibited the best performance, achieving CIP degradation of over 97%. The synthesized materials demonstrated excellent initial adsorption of CIP, around 30%, which facilitated subsequent degradation. Notably, the CIP photocatalytic degradation tests performed under solar radiation showed a synergistic effect between the base materials and carbon nitride in highly energetic environments. These results highlight the effectiveness of ternary photocatalysts TiO2/SnO2/g-C3N4 for CIP degradation, particularly under solar radiation.
Collapse
Affiliation(s)
- Gonzalo Alejandro Escareño-Torres
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Calle Circuito Cerro del Gato No. 202, Col. Cd Administrativa, 98160, Zacatecas, Zac., C.P, Mexico
| | - José Alfonso Pinedo-Escobar
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI Edificio 6, Carr. a Gdl Km 6.0, Ejido La Escondida, 98160, Zacatecas, Zac., C.P, Mexico
| | - David Alejandro De Haro-Del Río
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N., 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Patricia Becerra-Castañeda
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI Edificio 6, Carr. a Gdl Km 6.0, Ejido La Escondida, 98160, Zacatecas, Zac., C.P, Mexico
| | - Daniel G Araiza
- Instituto de Ciencias Aplicadas Y Tecnología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, C.P, Mexico
| | - Horacio Inchaurregui-Méndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Calle Circuito Cerro del Gato No. 202, Col. Cd Administrativa, 98160, Zacatecas, Zac., C.P, Mexico
| | - Cristina Jared Carrillo-Martínez
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI Edificio 6, Carr. a Gdl Km 6.0, Ejido La Escondida, 98160, Zacatecas, Zac., C.P, Mexico
| | - Luis Mario González-Rodríguez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Calle Circuito Cerro del Gato No. 202, Col. Cd Administrativa, 98160, Zacatecas, Zac., C.P, Mexico.
| |
Collapse
|
2
|
Macías-Vargas JA, Díaz-Ramírez ML, García-Mejía TA, Ramírez-Zamora RM. Enhanced ciprofloxacin degradation via photo-activated persulfate using the effluent of a large wastewater treatment plant. Top Catal 2022. [DOI: 10.1007/s11244-022-01666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Degradation of Thiabendazole and Its Transformation Products by Two Photo-Assisted Iron-Based Processes in a Raceway Pond Reactor. Top Catal 2022. [DOI: 10.1007/s11244-022-01638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Macías-Vargas JA, Campos-Mañas MC, Agüera A, Sánchez Pérez JA, Ramírez-Zamora RM. Enhanced activated persulfate oxidation of ciprofloxacin using a low-grade titanium ore under sunlight: influence of the irradiation source on its transformation products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24008-24022. [PMID: 33415630 DOI: 10.1007/s11356-020-11564-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In this work, the activated persulfate oxidation of ciprofloxacin (CIP) using a low-grade titanium ore under sunlight or simulated sunlight were conducted to analyze the CIP degradation efficiency and to identify the transformation products (TPs) generated during oxidation under both types of irradiation sources by using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). All advance oxidation process experiments were performed in a 2700-mL raceway reactor at a pH value of ~ 6.5 and an initial CIP concentration of 1 mg/L, during 90 min of reaction time. The control experiments carried out under simulated sunlight achieved a 97.7 ± 0.6% degradation efficiency, using 385 W/m2 of irradiation with an average temperature increase of 11.7 ± 0.6 °C. While, the experiments under sunlight reached a 91.2 ± 1.3% degradation efficiency, under an average irradiation value of 19.2 ± 0.3 W/m2 in October-November 2019 at hours between 11:00 am and 3:00 pm with an average temperature increase of 1.4 ± 0.8 °C. Mass spectrometry results indicated that 14 of the 108 possible TPs reported in the literature were detected. The calculated exact mass, measured accurate mass, and its characteristic diagnostic fragment ions were listed, and two new TPs were tentative identified. The TP generation analysis showed that some specific compounds were detected in different time intervals with kinetic variations depending on the irradiation used. Consequently, two CIP degradation pathways were proposed, since the type of irradiation determines the CIP degradation mechanism. Graphical abstract.
Collapse
Affiliation(s)
- José-Alberto Macías-Vargas
- Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Alcaldía Coyoacán, 04510, México City, Mexico
| | - Marina Celia Campos-Mañas
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120, Almería, Spain
| | - Ana Agüera
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120, Almería, Spain
| | - José Antonio Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120, Almería, Spain
| | - Rosa-María Ramírez-Zamora
- Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Alcaldía Coyoacán, 04510, México City, Mexico.
| |
Collapse
|