1
|
Pal M, Subhedar KM. Facile and Nondestructive Transformation of Intrinsic Hydrophobic Behavior of a Carbon Nanotubes Sheet to Hydrophilic. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38426699 DOI: 10.1021/acsami.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
It is imperative to induce hydrophilicity in intrinsically hydrophobic carbon nanotubes (CNTs) without losing their superior properties for applications that specifically deal with aqueous media. A method for transforming a CNTs sheet from hydrophobic to hydrophilic by treatment with N-methyl-2-pyrrolidone (NMP) is explored. The NMP-treated CNT sheets are assessed based on complementing characterization, and it is concluded that the binding of NMP to a CNTs surface is through noncovalent interaction without the incorporation of defects in CNTs. The induced hydrophilicity in the CNTs sheet is stable for water exposure over a longer duration while it displays a semireversible nature upon heat treatment. The mechanical and electrical properties of the NMP-treated CNTs sheet revealed enhancement in the tensile strength from 221 to 421 MPa while maintaining a good electrical conductivity of ∼1.22 × 104 S/m because of the improved interfacial properties. The hydrophilic CNTs exhibited excellent adsorption capacity for methylene blue dye. The NMP-treated CNTs sheets demonstrated their suitability in flexible hybrid supercapacitor (FHSC) devices with improved electrochemical performance with enhancement in the capacitance from 5.4 to 7.6 F/g and a decrease in the equivalent series resistance from 53 to 34 Ω compared to pristine CNTs-based devices. These solid-state FHSC devices displayed excellent cyclic charge-discharge performance along with robust behavior over thousands of bending cycles without significant performance degradation. The excellent dye removal capability and superior electrochemical performance of the NMP-treated CNTs sheet is a consequence of their improved interface with aqueous media, which is governed by the hydrophilic nature of the CNTs sheet.
Collapse
Affiliation(s)
- Mayank Pal
- National Physical Laboratory (NPL), Council of Scientific and Industrial Research (CSIR), New Delhi 110012, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Kiran M Subhedar
- National Physical Laboratory (NPL), Council of Scientific and Industrial Research (CSIR), New Delhi 110012, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
3
|
Feng M, Niu Z, Xing C, Jin Y, Feng X, Zhang Y, Wang B. Covalent Organic Framework Based Crosslinked Porous Microcapsules for Enzymatic Catalysis. Angew Chem Int Ed Engl 2023; 62:e202306621. [PMID: 37310867 DOI: 10.1002/anie.202306621] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
The design of porous microcapsules with selective mass transfer and mechanical robustness for enzyme encapsulation is highly desired for biocatalysis, yet the construction remains challenging. Herein, we report the facile fabrication of porous microcapsules by assembling covalent organic framework (COF) spheres at the interfaces of emulsion droplets followed by interparticle crosslinking. The COF microcapsules could offer an enclosed aqueous environment for enzymes, with size-selective porous shells that allow for the fast diffusion of substrates and products while excluding larger molecules such as protease. Crosslinking of COF spheres not only enhances the structural stability of capsules but also imparts enrichment effects. The enzymes encased in the COF microcapsules show enhanced activity and durability in organic media as verified in both batch reaction and continuous-flow reaction. The COF microcapsules offer a promising platform for the encapsulation of biomacromolecules.
Collapse
Affiliation(s)
- Mengchu Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ziru Niu
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yehao Jin
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
4
|
Jiang L, Rastgar M, Wang C, Ke S, He L, Chen X, Song Y, He C, Wang J, Sadrzadeh M. Robust PANI-entangled CNTs Electro-responsive membranes for enhanced In-situ generation of H2O2 and effective separation of charged contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Chani MTS, Karimov KS, Asiri AM, Rahman MM, Kamal T. Effect of Vibrations, Displacement, Pressure, Temperature and Humidity on the Resistance and Impedance of the Shockproof Resistors Based on Rubber and Jelly (NiPc–CNT–Oil) Composites. Gels 2022; 8:gels8040226. [PMID: 35448127 PMCID: PMC9027735 DOI: 10.3390/gels8040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we present the design, fabrication and characterization of shockproof rubber–jelly (NiPc–CNT–oil) composite-based resistors. To fabricate the resistors, gels of CNT and NiPc with edible oil were prepared and deposited on a flexible rubber substrate using rubbing-in technique. The devices’ resistance and impedance were investigated under the effect of pressure, displacement, humidity, temperature and mechanical vibrations. The resistance and the impedance decreased, on average, by 1.08 times under the effect of pressure (up to 850 gf/cm2) and by 1.04 times under the effect of displacement (up to 50 µm). Accordingly, upon increasing the humidity from 60% to 90% RH, the resistance and impedance decreased by up to 1.04 times, while upon increasing the temperature from 25 °C to 43 °C, the resistance and impedances also decreased by up to 1.05 times. Moreover, under the effect of vibration, a decrease in resistance and impedance, by up to 1.03 times, was observed. The investigated samples can potentially be used as prototypes for the development of shockproof jelly electronic-based devices in particular resistors. The technological achievement in the fabrication of these devices is the use of edible organic oil, which allows for the fabrication of uniform jelly films of organic materials that cannot be realized simply by mixing “dry” ingredients. Especially, we highlight that edible organic oil is environmentally friendly, unlike some other inorganic oils that are used in practice.
Collapse
Affiliation(s)
- Muhammad Tariq Saeed Chani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.M.R.); (T.K.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: or ; Tel.: +966-26-95229
| | - Khasan S. Karimov
- Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan;
- Center for Innovative Development of Science and Technologies of Academy of Sciences, Rudaki Ave., 33, Dushanbe 734025, Tajikistan
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.M.R.); (T.K.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.M.R.); (T.K.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.M.R.); (T.K.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Su H, Chu Y, Miao B. Degreasing cotton used as pore-creating agent to prepare hydrophobic and porous carbon cathode for the electro-Fenton system: enhanced H 2O 2 generation and RhB degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12965-z. [PMID: 33641103 DOI: 10.1007/s11356-021-12965-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
A porous carbon cathode was prepared using graphite, polytetrafluoroethylene (PTFE), and degreasing cotton (DC) through sintering treatment. The carbonization of DC by heat treatment played an ideal role in pore-creating, which weakened the mass transfer resistance of O2, and as a result, the adoption of degreasing cotton significantly improved the performance of H2O2 electro-generation. The optimized cathode was able to generate 567 mg L-1 H2O2 with a current efficiency (CE) of 86.7% by the electrochemical reaction of 60 min in a divided reactor. Furthermore, the degradation of rhodamine B (RhB) was carried out by an electro-Fenton system using the optimal cathode selected. The developed electro-Fenton system exhibited an excellent RhB degradation performance. The RhB solution of 50 mg L-1 was decolorized completely by the treatment of 10 min. Moreover, the degradation of 50~90 mg L-1 RhB solution presented over 90% TOC removal by the treatment of 120 min, indicating the ideal mineralization of organic pollutants. In addition, it was found that •OH was the major oxidizing specie responsible for the organics degradation. Finally, the possible pathway of RhB degradation in the electro-Fenton system was proposed by GC-MS analysis. The adoption of natural fibers for pore-creating provides an innovative and low-cost method to prepare porous cathode, which may promote the application of electro-Fenton oxidation in wastewater treatment.
Collapse
Affiliation(s)
- Hongzhao Su
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yanyang Chu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.
| | - Baoyu Miao
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
7
|
Wei K, Cui T, Huang F, Zhang Y, Han W. Membrane Separation Coupled with Electrochemical Advanced Oxidation Processes for Organic Wastewater Treatment: A Short Review. MEMBRANES 2020; 10:membranes10110337. [PMID: 33198324 PMCID: PMC7697808 DOI: 10.3390/membranes10110337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022]
Abstract
Research on the coupling of membrane separation (MS) and electrochemical advanced oxidation processes (EAOPs) has been a hot area in water pollution control for decades. This coupling aims to greatly improve water quality and focuses on the challenges in practical application to provide a promising solution to water shortage problems. This article provides a summary of the coupling configurations of MS and EAOPs, including two-stage and one-pot processes. The two-stage process is a combination of MS and EAOPs where one process acts as a pretreatment for the other. Membrane fouling is reduced when setting EAOPs before MS, while mass transfer is promoted when placing EAOPs after MS. A one-pot process is a kind of integration of two technologies. The anode or cathode of the EAOPs is fabricated from porous materials to function as a membrane electrode; thus, pollutants are concurrently separated and degraded. The advantages of enhanced mass transfer and the enlarged electroactive area suggest that this process has excellent performance at a low current input, leading to much lower energy consumption. The reported conclusions illustrate that the coupling of MS and EAOPs is highly applicable and may be widely employed in wastewater treatment in the future.
Collapse
Affiliation(s)
- Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
| | - Tao Cui
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- Nanjing Research Institute of Electronic Engineering, Nanjing 210007, China
| | - Fang Huang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
| | - Yonghao Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
- Correspondence: (Y.Z.); (W.H.)
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- Correspondence: (Y.Z.); (W.H.)
| |
Collapse
|