1
|
Scott-Fordsmand JJ, Mariyadas J, Amorim MJ. Soil type dependent toxicity of AgNM300K can be predicted by internal concentrations in earthworms. CHEMOSPHERE 2024; 364:143079. [PMID: 39146991 DOI: 10.1016/j.chemosphere.2024.143079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
A continuous challenge in nanotoxicology is the interaction of nanoparticles with the soil components. In the present study, we compare the toxicity of silver nanoparticles (AgNM300K) on earthworms across 4 different soils, exploring which among the total-, soil solution-, or worm tissue-Ag-concentrations that enables the best prediction of toxicity across the soils. We exposed the earthworm Eisenia fetida to AgNM300K for 56 days to assess survival, reproduction, and bioaccumulation. These endpoints were related to measurements of Ag-ions and -nanoparticles in soil, soil solution, and in the worm tissue. Tested soils included the standard OECD, LUFA 2.2, Hygum, and RefSol 01A soils. Toxicity was strongly dependent on the soil type, highly correlated with the organic matter, clay, and Cation Exchange Capacity (CEC). CEC provided the best correlation with the internal silver concentrations across the soils. The soil solution did not provide useful predictions across the soils.
Collapse
Affiliation(s)
- Janeck J Scott-Fordsmand
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, Building 1120, DK-8000, Aarhus, Denmark.
| | - Jennifer Mariyadas
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, Building 1120, DK-8000, Aarhus, Denmark
| | - Mónica Jb Amorim
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Gomes SIL, Zanoni I, Blosi M, Costa AL, Hristozov D, Scott-Fordsmand JJ, Amorim MJB. Safe and sustainable by design Ag nanomaterials: A case study to evaluate the bio-reactivity in the environment using a soil model invertebrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171860. [PMID: 38518823 DOI: 10.1016/j.scitotenv.2024.171860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Safe-and-sustainable-by-design (SSbD) nanomaterials (NMs) or NM-containing products are a priority. Silver (Ag) NMs have a vast array of applications, including biomedical and other products, even as nanopesticides. Thus, their release to the environment is expected to increase. The aim of the present study was to assess the ecotoxicity of the SSbD Ag NM to the soil model species Enchytraeus crypticus (Oligochaeta). The Ag NM tested consists in a SSbD Ag with biomedical applications, a hydroxyethyl cellulose (HEC) coated Ag NMs (AgHEC) and its toxicity was compared to the naked Ag NMs (Ag-Sigma), an Ag-based biomedical product (PLLA-Ag: Poly l-Lactide microfibers doped with Ag), and AgNO3. Effects were assessed both in soil and aqueous media, following the standard OECD guideline in soil (28 days) and the OECD extension (56 days), and short-term pulse (5 days) in aqueous media: reconstituted water (ISO water) and soil:water (S:W) extracts, followed by a 21-days recovery period in soil. Ag materials were thoroughly characterized as synthesized and during the test in media and animals. Results in S:W showed AgHEC was more toxic than Ag-Sigma (ca. 150 times) and PLLA-Ag (ca. 2.5 times), associated with a higher Ag uptake. Higher toxicity was related to a smaller hydrodynamic size and higher suspension stability, which in turn resulted in a higher bioavailability of Ag NMs and released ions, particularly in S:W. Toxicity was correlated with the main physicochemical features, providing useful prediction of AgNMs bioactivity. The ability to test E. crypticus in a range of media with different and/or increasing complexity (water, S:W extracts, soil) provided an excellent source to interpret results and is here recommended.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ilaria Zanoni
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Magda Blosi
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Anna L Costa
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Italy
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Santos FCF, Verweij RA, van Gestel CAM, Amorim MJB. Toxicokinetics and toxicodynamics of Ag nanomaterials (NM300K) in the soil environment-impact on Enchytraeus crypticus (Oligochaeta). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114599. [PMID: 36738615 DOI: 10.1016/j.ecoenv.2023.114599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Silver (Ag) is one of the most used elements in the nanomaterials (NMs) form, which upon release to the environment can be harmful to organisms. We compared the toxicokinetics (TK) and toxicodynamics (TD) of Ag from AgNO3 (0, 15, 45, 135, 405 mg Ag/kg soil) and AgNM300K (0, 75, 150, 300, 600, 1200 mg Ag/kg soil) in the model organism Enchytraeus crypticus. Organisms were exposed in LUFA 2.2 soil, and besides body Ag concentrations, survival and reproduction were determined, in a time series (for 21 days). In the soil, the available (CaCl2 extractable) Ag fraction from Ag NM300K increased from 0 to 21 days but did not consistently change for AgNO3. Internal concentrations reached equilibrium in most exposures to both Ag forms. The organisms were able to internalize and eliminate Ag, but less when exposed to Ag NM300K. The overall uptake rate constants for Ag from AgNO3 and Ag NM300K exposures were 0.05 and 0.06 kg soil/kg organism/day, respectively, the elimination rate constants 0.2 and 0.1 day-1, respectively. For AgNO3 the median lethal concentrations decreased steadily with time, while for Ag NM300K they remained constant during the first 10 days of exposure followed by a 2-fold decline in the last 7 days. The 21-d LC50s for both Ag forms were similar but the LC50inter (based on internal concentrations) were 63 and 121 mg Ag/kg body DW (Dry Weight) for AgNO3 and Ag NM300K, respectively, showing higher toxicity of AgNO3. These results show the importance of assessing time to toxicity, a relevant factor in toxicity assessment, especially for NMs.
Collapse
Affiliation(s)
- Fátima C F Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Boraschi D, Canesi L, Drobne D, Kemmerling B, Pinsino A, Prochazkova P. Interaction between nanomaterials and the innate immune system across evolution. Biol Rev Camb Philos Soc 2023; 98:747-774. [PMID: 36639936 DOI: 10.1111/brv.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), 1068 Xueyuan Blvd, 518071, Shenzhen, China.,Institute of Protein Biochemistry and Cell Biology (IBBC), CNR, Via Pietro Castellino 111, 80131, Naples, Italy.,Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80132, Napoli, Italy.,China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR, SZN), Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000, Ljubliana, Slovenia
| | - Birgit Kemmerling
- ZMBP - Center for Plant Molecular Biology, Plant Biochemistry, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
5
|
Singh K, Thakur SS, Ahmed N, Alharby HF, Al-Ghamdi AJ, Al-Solami HM, Bahattab O, Yadav S. Ecotoxicity assessment for environmental risk and consideration for assessing the impact of silver nanoparticles on soil earthworms. Heliyon 2022; 8:e11167. [PMID: 36339990 PMCID: PMC9626949 DOI: 10.1016/j.heliyon.2022.e11167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Silver nanoparticles (AgNPs) are found in a range of commercial products due to their proven antibacterial properties. The unused silver nanoparticles (AgNPs) may make its way into the soil via biosolids that come from wastewater treatment or the effluent that comes from industrialisation processes, where it could be harmful to the organism that live in terrestrial ecosystems. In addition, silver ions are one of the most toxic forms of heavy metal released from dissolved silver nitrate (AgNO3) and AgNPs through dissolution or oxidation. The study examined the effect of engineered AgNPs, and AgNO3 on earthworms which are one of the most important bioindicator for determining toxicity in soil environment. Epigeic earthworm, Eudrilus eugeniae was exposed to soils spiked with equivalent concentrations of AgNPs or AgNO3 at 0, 10, 100, and 200 mg kg−1 in soil for 56 days of experiments. The survival and growth rate was recorded at 7th, 14th, 21st, 28th days and accumulation of Ag in earthworm tissue at 14th and 28th days, antioxidant enzymes at 28th days and reproduction at 56th days of experiment. Further, a short-term exposure of AgNPs and AgNO3 was conducted to observe avoidance behaviour after 48 h of exposure. The result indicated that survivability was relatively low on exposure of AgNO3 (83.3%) than AgNPs (86.7%) in 200 mg kg−1 spiked soils, besides the growth was inhibited in both AgNPs (3.68%) and AgNO3 (3.25%) at 28th days. The uptake of Ag from AgNO3 in the earthworm tissue was slightly higher than uptake of Ag from AgNPs and it showed concentration-dependent inhibitory effects on reproduction. In AgNO3 spiked soil, a high level of the Malondialdehyde (MDA) based lipid peroxidation and increased activity of antioxidant enzyme catalase (CAT) was observed than AgNPs spiked soil. Similarly, glutathione (GSH), a cofactor for GPx and GST enzymes, was lower in AgNO3-spiked soil than in AgNPs-spiked soil. In terms of avoidance behaviour, there was no discernible difference between the distribution of earthworms in AgNPs and AgNO3 after 48 h. The study found E. eugeniae exhibits concentration-dependent alterations in its competence to survive, antioxidant enzymes, and reproduction. AgNO3 was found to be more sensitive than AgNPs in the study. The research investigates the effect of AgNPs on earthworms in the soil ecosystem since this understanding is crucial for a comprehensive evaluation of AgNPs' environmental consequences.
Collapse
Affiliation(s)
- Kiran Singh
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Samrendra Singh Thakur
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Nazeer Ahmed
- Department of Agriculture, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah J. Al-Ghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Habeeb M. Al-Solami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India,Corresponding author.
| |
Collapse
|
6
|
Deng N, Li H, Li Y, Mo F, Wang M, Li Z, Chen X, Xu J, Chai R, Wang H. Physiological homeostasis alteration and cellular structure damage of Chlorella vulgaris exposed to silver nanoparticles with various microstructural morphologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26011-26020. [PMID: 35254620 DOI: 10.1007/s11356-022-19193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of silver nanoparticles (AgNPs) with a single morphology to aquatic organisms has been well demonstrated in the past decade, but few studies have been carried out to evaluate the differences in toxicity among AgNPs with various microstructural morphologies. In this work, C. vulgaris was used as the tested organism to examine the differences in toxic effects among AgNSs, AgNCs, and AgPLs at concentrations of 0.5, 1.0, 2.0, and 5.0 mg/L. The results showed that the cell density and chlorophyll a content of C. vulgaris decreased when the dose of AgNPs was increased, while the inhibiting effects that were caused by AgPLs were stronger than those that were caused by AgNCs and AgNSs. Under short-term exposure to AgPLs, the ROS content was significantly higher than those under exposure to AgNCs and AgNSs, while the MDA content fluctuated without obvious regularity. The dose of AgPLs affected the antioxidative enzyme activity and lipid peroxidation more obviously than those of AgNSs and AgNCs. The superoxide dismutase and catalase contents in the former case were distinctly higher than those in the latter cases. Consequently, the cell apoptosis rate under exposure to AgPLs reached 83%, which was higher than those under exposure to AgNSs (50%) and AgNCs (71%). This work shows that the level of toxicity to C. vulgaris was in the order of AgPLs > AgNCs > AgNSs. The obtained results demonstrate that the microstructural morphologies of AgNPs determined their potential toxicity.
Collapse
Affiliation(s)
- Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Xi Chen
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Rui Chai
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Hongxuan Wang
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| |
Collapse
|
7
|
Houida S, Yakkou L, Kaya LO, Bilen S, Fadil M, Raouane M, El Harti A, Amghar S. Biopriming of Maize seeds with plant growth‐promoting bacteria isolated from the earthworm
Aporrectodea molleri
: Effect on seed germination and seedling growth. Lett Appl Microbiol 2022; 75:61-69. [DOI: 10.1111/lam.13693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Sofia Houida
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
- Department of Soil Science and Plant Nutrition Faculty of Agriculture Atatürk University Erzurum 25240 Turkey
| | - Lamia Yakkou
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
- Department of Soil Science and Plant Nutrition Faculty of Agriculture Atatürk University Erzurum 25240 Turkey
| | - Leyla Okyay Kaya
- Department of Soil Science and Plant Nutrition Faculty of Agriculture Atatürk University Erzurum 25240 Turkey
| | - Serdar Bilen
- Department of Soil Science and Plant Nutrition Faculty of Agriculture Atatürk University Erzurum 25240 Turkey
| | - Mouhcine Fadil
- Physico‐chemical laboratory of inorganic and organic materials Materials Science Center (MSC) Ecole Normale Supérieure Mohammed V University in Rabat Rabat Morocco
| | - Mohammed Raouane
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
| | - Abdellatif El Harti
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
| | - Souad Amghar
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
| |
Collapse
|
8
|
Antimicrobial Resistance and Inorganic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312890. [PMID: 34884695 PMCID: PMC8657868 DOI: 10.3390/ijms222312890] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.
Collapse
|
9
|
Houida S, Yakkou L, Bilen S, Raouane M, El Harti A, Amghar S. Taxonomic and functional characteristics of aerobic bacteria isolated from the chloragogenous tissue of the earthworm Aporrectodea molleri. Arch Microbiol 2021; 203:4805-4812. [PMID: 34196750 DOI: 10.1007/s00203-021-02396-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
Earthworms are considered as a rich microhabitat for the growth and proliferation of diverse soil microorganisms. Hence, earthworms' associated bacteria attracted interest due to their high metabolic profiles and benefits to soil fertility and plant growth. In this study, we aimed to isolate for the first-time aerobic bacteria present in the chloragogenous tissue of the earthworm Apporectodea molleri and test their Plant Growth-Promoting abilities and their resistance to heavy metals (Mn, Zn, Cu, Cd, and Ni). The 16S rRNA gene sequencing revealed the affiliation of the fifteen isolates to six main bacterial genera: Enterobacter, Citrobacter, Aeromonas, Pseudomonas, Bacillus, Terribacillus. These strains displayed different plant growth promoting traits (e.g., indole-3-acetic acid IAA, siderophores, nitrogen fixation, phosphate, and potassium solubilization), in addition, they were able to resist differently to heavy metals. Bacillus strains were most effective as three strains, namely B. subtilis strain TC34; B. circulans strain TC7 and Bacillus sp. strain TC10, were positive to all PGP traits and resisted to all heavy metals. This study illustrates the potential of bacteria from the chloragogenous tissue to exhibit multiple properties, which can be related to the functional feature of this tissue to stock metabolites and neutralize toxic elements.
Collapse
Affiliation(s)
- Sofia Houida
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco.,Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, Erzurum, 25240, Turkey
| | - Lamia Yakkou
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco.,Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, Erzurum, 25240, Turkey
| | - Serdar Bilen
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, Erzurum, 25240, Turkey.
| | - Mohammed Raouane
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| | - Abdellatif El Harti
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| | - Souad Amghar
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| |
Collapse
|
10
|
Emmanouil C, Kungolos A. Environmental Toxicity Assessment: state of the art and future directions in a world of arising threats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3753-3755. [PMID: 33394407 DOI: 10.1007/s11356-020-11950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Athanasios Kungolos
- School of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|