1
|
Sathyanarayanan S, Suresh S, Saravanan CG, Uslu S. Experimental investigation on sucrose/alumina catalyst coated converter in gasoline engine exhaust gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61204-61216. [PMID: 35562607 DOI: 10.1007/s11356-022-20655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/02/2022] [Indexed: 05/10/2023]
Abstract
In this study, a modified catalytic converter was employed to treat the harmful exhaust gas pollutants of a twin-cylinder, four-stroke spark-ignition engine. This research mainly focuses on the emission reduction of unburnt hydrocarbons, carbon monoxide, and nitrogen oxides at low light-off temperatures. A sucrolite catalyst (sucrolite) was coated over the metallic substrate present inside the catalytic converter, and exhaust gas was allowed to pass through it. A scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy were used to investigate the changes in morphology, chemical compounds, and functional group elements caused by the reactions. Catalytic reactions were studied by varying the engine loads and bed temperatures, and the results were compared with those of the commercial catalytic converter. The results show that sucrose present in the catalyst was suitable at low temperatures while alumina was suitable for a wide range of temperatures. In the case of the modified catalytic converter, the maximum catalytic conversion efficiencies achieved for oxidizing CO and HC were 70.73% and 85.14%, respectively, and for reduction reaction at NOx was 60.22% which is around 42% higher than in commercial catalytic converter. As a result, this study claims that sucrolite catalyst is effective for low-temperature exhaust gas.
Collapse
Affiliation(s)
- S Sathyanarayanan
- Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - S Suresh
- Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| | - C G Saravanan
- Department of Mechanical Engineering, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Samet Uslu
- Automotive Engineering, Karabuk University, Demir-Celik Campus, Balıklarkayası Mevkii, 78050, Karabuk, Turkey
| |
Collapse
|
2
|
Hao X, Yang J, Sun X, Ning P, Li K, Li Y, Hao Y, Song X. Experimental and theoretical studies on NO selective catalytic oxidation over α-MnO 2. J Environ Sci (China) 2023; 126:396-407. [PMID: 36503766 DOI: 10.1016/j.jes.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/17/2023]
Abstract
Based on the experimental and theoretical methods, the NO selective catalytic oxidation process was proposed. The experimental results indicated that lattice oxygen was the active site for NO oxide over the α-MnO2(110) surface. In the theoretical study, DFT (density functional theory) and periodic slab modeling were performed on an α-MnO2(110) surface, and two possible NO oxidation mechanisms over the surface were proposed. The non-defect α-MnO2(110) surface showed the highest stability, and the surface Os (the second layer oxygen atoms) position was the most active and stable site. O2 molecule enhanced the joint adsorption process of two NO molecules. The reaction process, including O2 dissociation and O=N-O-O-N=O formation, was calculated to carry out the NO catalytic oxidation mechanism over α-MnO2(110). The results showed that NO oxidation over the α-MnO2(110) surface exhibited the greatest possibility following the route of O=N-O-O-N=O formation. Meanwhile, the formation of O=N-O-O-N=O was the rate-determining step.
Collapse
Affiliation(s)
- Xingguang Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuejiao Hao
- Huadong Engineering Corporation Limited, Power Construction Corporation of China, Hangzhou 311122, China
| | - Xin Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
3
|
Experimental study on supported MnO2-based catalysts for NO oxidation. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Cao W, Zhang W, Guo Z. Carbon-based zero valent iron catalyst for NO X removal at low temperatures: performance and kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80353-80365. [PMID: 35716304 DOI: 10.1007/s11356-022-20961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In order to solve the problem of nitrous oxide (NOX) removal at low temperatures, the carbon-based zero valent iron (C-ZFe) catalyst was prepared and studied. According to the kinetic study and the obtained kinetic parameters, the De-NOX reactor was designed to provide information for industrial applications. The box-behnken experimental design (BBD) was used to study the performance of C-ZFe, and the optimized operating parameters were obtained as the temperature was 408.15 K, the catalyst bed height was 140 cm (the space velocity was 459 h-1), the concentration of NO was 550 ppm, under which the NOX conversion was 72.7%. A kinetic model based on Langmuir-Hinshelwood (L-H) and Mars Van Krevelen mechanism was used to describe the kinetics for the reduction of NO by C-ZFe at low temperatures. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface area and pore size distribution measurements, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results supported the validity of the model proposed. The gas-solid catalytic kinetic process of NO removal by C-ZFe was a quasi-first-order kinetic reaction, the apparent activation energy was 41.57 kJ/mol, and the pre-exponential factor was 2980 min-1.
Collapse
Affiliation(s)
- Wan Cao
- Industrial Furnace Research Institute, College of Metallurgy, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shenyang, 110819, Liaoning, China
| | - Weijun Zhang
- Industrial Furnace Research Institute, College of Metallurgy, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shenyang, 110819, Liaoning, China.
| | - Ziyang Guo
- Industrial Furnace Research Institute, College of Metallurgy, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shenyang, 110819, Liaoning, China
| |
Collapse
|
5
|
Bu J, Deng Z, Liu H, Li T, Yang Y, Zhong S. Bimetallic modified halloysite particle electrode enhanced electrocatalytic oxidation for the degradation of sulfanilamide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114975. [PMID: 35390610 DOI: 10.1016/j.jenvman.2022.114975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The treatment of antibiotics wastewater by electrocatalytic oxidation has attracted much attention. In the paper, a novel halloysite bimetallic (HLS-Cu-Mn) particle electrode material was prepared and a bench-scale electrocatalytic reaction tank was designed. A three-dimensional electrocatalytic oxidation reactor composed of HLS-Cu-Mn and a bench-scale electrocatalytic reaction tank was used to degrade Sulfanilamide (SA) wastewater. Characterization of the synthesized material was conducted with Scanning electron microscopy (SEM), X-ray polycrystalline powder diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET). The electron spin resonance spectroscopy test results confirmed that HLS-Cu-Mn produced a large number of •OH. The electrochemical workstation confirmed that HLS-Cu-Mn had strong electrocatalytic activity and repolarization ability. Under the optimum preparation conditions and degradation process parameters, the removal efficiency of SA and TOC was 99.84% and 88.95% respectively. The method also has good degradation efficiency for aniline, phenol, herbicides, antibiotics, and dyeing wastewater. It was found that 4 main intermediates appeared in the degradation process by Ultra-high performance liquid chromatography/triple tandem quadrupole mass spectrometry (LC-MS). In sum, it was believed that this work provides a new vision and idea for water treatment.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
6
|
Zang P, Liu J, Liu X, Zhang G, Chen J, Li J, Zhang Y. Remarkable enhancement in the N 2 selectivity of NH 3-SCR over the CeNb 3Fe 0.3/TiO 2 catalyst in the presence of chlorobenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19309-19323. [PMID: 34713406 DOI: 10.1007/s11356-021-17116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The simultaneous removal of NOx and dioxins is the frontier of environmental catalysis, which is still in the initial stage and poses several challenges. In this study, a series of CeNb3Fex/TiO2 (x = 0, 0.3, 0.6, and 1.0) catalysts were prepared by the sol-gel method and examined for the synergistic removal of NOx and CB. The CeNb3Fe0.3/TiO2 catalyst exhibits an optimum catalytic performance, with an NOx conversion greater than 95% at 260-380 °C. It also exhibits an optimal CB oxidation activity, in which CB promoted both the NOx conversion and N2 selectivity below 250 °C. Moreover, the more favorable ratios of Ce4+ to Ce3+ and plentiful surface-adsorbed oxygen species are the reasons why CeNb3Fe0.3/TiO2 catalyst has better catalytic activity than other catalysts at the lower temperature. Simultaneously, owing to the modulation of Fe to the redox properties of Ce and Nb, the large number of oxygen vacancies and acid sites was generated, and the CeNb3Fe0.3/TiO2 catalyst is beneficial to NOx reduction and CB oxidation. Furthermore, the results of in situ DRIFTS study reveal the NH3-SCR reactions over CeNb3Fe0.3/TiO2 catalysts are mainly conformed to by the L-H mechanism (< 350 °C) and E-R mechanism (> 350 °C), respectively, and the multi-pollutant conversion mechanism in the synergistic reaction was systematically studied.
Collapse
Affiliation(s)
- Pengchao Zang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Jun Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Xiaoqing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, People's Republic of China
| | - Guojie Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China.
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yongfa Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China
| |
Collapse
|
7
|
Kaushik R, Singh PK, Halder A. Modulation strategies in titania photocatalyst for energy recovery and environmental remediation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Lei Z, Hao S, Yang J, Zhang L, Fang B, Wei K, Lingbo Q, Jin S, Wei C. Study on denitration and sulfur removal performance of Mn-Ce supported fly ash catalyst. CHEMOSPHERE 2021; 270:128646. [PMID: 33127116 DOI: 10.1016/j.chemosphere.2020.128646] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen oxides (NOx) are the main pollutants of air, which mainly come from the combustion of coal and fossil fuels. In this paper, with fly ash used as the catalyst carrier, the effects on the denitration and sulfur resistance of Mn-Ce loading sequence and molar ratio were studied. The catalyst was characterized and analyzed by XRD, XPS, SEM. The results show that when Mn-Ce bimetal is loaded at the same time, Mn ions enter the CeO2 lattice to form a solid solution of Mn-O-Ce fluorite structure, which makes the catalyst has the best denitration and sulfur resistance. The catalyst denitration performance increases first and then decreases with the increase of Mn-Ce molar ratio. When Mn-Ce is 1:1, the denitration efficiency is higher, the total conversion rate of NO is the highest and the deactivation time is the longest, the catalyst is resistant to sulfur performance is also the best.
Collapse
Affiliation(s)
- Zhang Lei
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an, 710021, China.
| | - Shu Hao
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Jia Yang
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Lei Zhang
- China National Heavy Machinery Research Institute co, Ltd, Xi'an, 710032, China
| | - Bai Fang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kuang Wei
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Qi Lingbo
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Shang Jin
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Chao Wei
- Shenmu Hongliulin Coal Mine of Shaanxi Coal Industry Co., Ltd., Shenmu, 719300, China
| |
Collapse
|
9
|
Xu G, Guo X, Cheng X, Yu J, Fang B. A review of Mn-based catalysts for low-temperature NH 3-SCR: NO x removal and H 2O/SO 2 resistance. NANOSCALE 2021; 13:7052-7080. [PMID: 33889905 DOI: 10.1039/d1nr00248a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The development of high-efficiency catalysts is the key to the low-temperature NH3-SCR technology. The introduction of SO2 and H2O will lead to poisoning and deactivation of the catalysts, which severely limits the development and application of NH3-SCR technology. This review introduces the necessity of NOx removal, explains the mechanisms of H2O and SO2 poisoning on NH3-SCR catalysts, highlights the Mn-based catalysts of different active metals and supports and their resistance to H2O and SO2, and analyses the relationship between metal modification, selection of support and preparation method, morphology and structure design and SO2/H2O resistance. Given the current problems, this review points out the future research focus of Mn-based catalysts and also puts forward corresponding countermeasures to solve the existing problems.
Collapse
Affiliation(s)
- Guiying Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | | | | | | | | |
Collapse
|
10
|
Ao R, Ma L, Guo Z, Yang J, Mu L, Yang J, Wei Y. NO oxidation performance and kinetics analysis of BaMO 3 (M=Mn, Co) perovskite catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6929-6940. [PMID: 33010017 DOI: 10.1007/s11356-020-10993-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Perovskite is an efficient and emerging catalyst for NO oxidation. In this study, BaMnO3 and BaCoO3 perovskite catalysts were synthesized by the sol-gel method, and their catalytic oxidation performances of NO were studied. The catalytic performances indicated that BaMnO3 and BaCoO3 perovskites had the highest NO oxidation activities with the NO conversions of 78.2% at 350 °C and 84.3% at 310 °C, respectively. The high activities of BaMnO3 and BaCoO3 perovskite catalysts were related to the abundant surface adsorption oxygen (OA = 76.21% and 78.57%, respectively) and the high concentration of Mn4+ (Mn4+/Mn = 66.95%) and Co3+ (Co3+/Co = 63.8%). Moreover, the results of FT-IR and kinetics revealed that NO and O2 adsorbed on the surface of samples and combined with the B-O band to form bidentate nitrate and bridging nitrate, which eventually was converted into NO2. The kinetics analysis revealed that the NO oxidation reaction followed the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. In addition, the activation energies were 36.453 kJ/mol for BaMnO3 and 30.081 kJ/mol for BaCoO3, implying that BaMnO3 and BaCoO3 provide low-cost and efficient catalysts, which can be comparable to Pt noble metal catalysts.
Collapse
Affiliation(s)
- Ran Ao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Liping Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Zhiying Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jing Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Liusen Mu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jie Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Yi Wei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
11
|
Liu Y, Gao F, Yi H, Yang C, Zhang R, Zhou Y, Tang X. Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: a review on catalysts and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2549-2571. [PMID: 33105009 DOI: 10.1007/s11356-020-11253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxides (NOx, which mainly include more than 90% NO) are one of the major air pollutants leading to a series of environmental problems, such as acid rain, haze, photochemical smog, etc. The selective catalytic oxidation of NO to NO2 (NO-SCO) is regarded as a key process for the development of selective catalytic reduction of NOx by ammonia (via fast selective catalytic reduction reaction) and also the simultaneous removal of multipollutant (pre-oxidation and post-absorption). Until now, scholars have developed various types of NO-SCO catalysts, dividing the main groups into noble metals (Pt, Pd, Ru, etc.), metal oxides (Mn-, Co-, Cr-, Ce-based, etc.), perovskite-type oxides (LaMnO3, LaCoO3, LaCeCoO3, etc.), carbon materials (activated carbon, carbon fiber, carbon nanotube, graphene, etc.), and zeolites (ion-exchanged ZSM-5, CHA, SAPO, MCM-41, etc.) in this review. This paper summarizes the recent progress of the above typical catalysts and mostly analyzes the catalytic performance for NO oxidation in terms of the H2O and/or SO2 resistances and also the influencing factors, and their reaction mechanisms are described in detail. Finally, this review points out the key problems and possible solutions of the current researches and presents the application prospects and future development directions of NO-SCO technology using the above typical catalysts.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chen Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Runcao Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
12
|
Ghiassee M, Rezaei M, Meshkani F, Mobini S. Preparation of the Mn/Co mixed oxide catalysts for low-temperature CO oxidation reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:379-388. [PMID: 32808130 DOI: 10.1007/s11356-020-10484-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The Mn/Co mixed powders with various Mn/Co molar ratios were prepared by the coprecipitation method and used in low-temperature CO oxidation. The physicochemical characteristics of these powders were characterized using the Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy (SEM) analyses. The results demonstrated that the Mn/Co molar ratio significantly affected both the textural and catalytic properties and the sample with a Mn/Co = 1:1 possessed a BET area of 123.7 m2g-1 with a small mean pore size of 6.44 nm. The catalytic results revealed that the pure cobalt and manganese catalysts possessed the low catalytic activity and the pure Co catalyst is not active at temperatures lower than 140 °C. The highest catalytic activity was observed for the catalyst with a Mn/Co = 1. The obtained results showed that the incorporation of Pd into the Mn/Co catalyst significantly enhanced the catalytic activity for oxidation of carbon monoxide and the highest CO conversion was observed for the catalyst with 1 wt.% Pd and this catalyst exhibited a CO conversion of 100% at 80 °C.
Collapse
Affiliation(s)
- Mojtaba Ghiassee
- Institute of Nanoscience and Nanotechnology, University of Kashan, P.O. Box 8731751117, Kashan, Iran
| | - Mehran Rezaei
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16765-163, Tehran, Iran.
| | - Fereshteh Meshkani
- Institute of Nanoscience and Nanotechnology, University of Kashan, P.O. Box 8731751117, Kashan, Iran
- Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, P.O. Box 8731751117, Kashan, Iran
| | - Sajad Mobini
- Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, P.O. Box 8731751117, Kashan, Iran
| |
Collapse
|
13
|
Lu Z, Lei Z, Hao S, Yang J, Lei Z, Fang B, Xiaosheng C. Study on Denitration Performance of Solid Waste Blast Furnace Slag Catalysts under Different Preparation Processes. ACS OMEGA 2020; 5:32216-32226. [PMID: 33376859 PMCID: PMC7758900 DOI: 10.1021/acsomega.0c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
In this article, blast furnace slag, a high-yield industrial solid waste, was taken as the research object and it was used as the main material. Bentonite was used as the binder, and water was added to shape the blast furnace slag into a small column. The denitration catalyst was prepared using different methods, its denitration performances were compared and analyzed, and the best preparation method and process parameters were screened. Results showed that bentonite will clearly improve denitration performance, and 4:1 blast furnace slag and bentonite was selected as the molding ratio to reduce the effect of bentonite on its performance, combined with the hardness and surface adhesion of the prepared carrier. Separately, the catalysts were prepared using citric acid impregnation, hydrothermal decomposition, and mixing method, and active Mn was loaded. Among them, the hydrothermal decomposition method cannot completely decompose in a closed kettle, resulting in a lower denitration performance. The catalyst prepared using the mixing method is superior to that prepared using the impregnation method because the active component prepared by the former was more uniformly dispersed, and simple and easy to operate, which can meet the needs of the excess denitration catalysts of small enterprises.
Collapse
Affiliation(s)
- Zhao Lu
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Zhang Lei
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Shu Hao
- Institute
of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Jia Yang
- Institute
of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Zhang Lei
- China
National Heavy Machinery Research Institute Co, Ltd, Xi’an 710032, China
| | - Bai Fang
- CAS
Key Laboratory of Green Process and Engineering, Institute of Process
Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Xiaosheng
- Shenmu
Hongliulin Coal Mine of Shaanxi Coal Industry Co., Ltd., Shenmu 719300, China
| |
Collapse
|
14
|
Cao W, Zhang W. Low temperature selective catalytic reduction of nitric oxide with an activated carbon-supported zero-valent iron catalyst. RSC Adv 2020; 10:42613-42618. [PMID: 35516731 PMCID: PMC9058033 DOI: 10.1039/d0ra07939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Selective catalytic reduction (SCR) of nitrogen oxides with an activated carbon-supported zero-valent iron catalyst is a method for removing NO under low temperature, which can remove CO and NO simultaneously. In the present study, the thermodynamics of low temperature denitrification was analyzed. By means of X-ray diffraction and Brunner–Emmet–Teller (BET) measurements, the phase and structure of the catalyst were thoroughly investigated. To determine the activity of the catalyst, a series of catalytic performance tests were carried out. The results indicated that the catalyst can act on the chemical reactions during the low-temperature denitrification process. An increase in the iron loading covered the micropores, resulting in a smaller specific surface area, which had little influence on the total pore volume. Moreover, activated carbon provided a carrier structure for iron and reduced NO simultaneously. The reduction of NO with activated carbon to N2 was the main reaction. By the oxidation of iron and the reduction of activated carbon, the activity of the catalyst decreased. A novel transition metal-supported catalyst which can be used for denitrification in a low-temperature sintering flue gas.![]()
Collapse
Affiliation(s)
- Wan Cao
- School of Metallurgy, Industrial Furnace Research Institute, Northeastern University Shenyang 110819 P. R. China
| | - Weijun Zhang
- School of Metallurgy, Industrial Furnace Research Institute, Northeastern University Shenyang 110819 P. R. China
| |
Collapse
|