1
|
Dragun Z, Stipaničev D, Fiket Ž, Lučić M, Udiković Kolić N, Puljko A, Repec S, Šoštarić Vulić Z, Ivanković D, Barac F, Kiralj Z, Kralj T, Valić D. Yesterday's contamination-A problem of today? The case study of discontinued historical contamination of the Mrežnica River (Croatia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157775. [PMID: 35926611 DOI: 10.1016/j.scitotenv.2022.157775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The remnants of historical industrial contamination can be detected in many aquatic ecosystems worldwide even at present time. Mrežnica is a river in Croatia that has been, for more than a hundred years, continually exposed to effluents of various industries, which have, in modern time, mostly ceased to operate. Our aim was to establish the level of current contamination and pollution of the Mrežnica river-water and sediments. The study of river contamination at three sites (reference site; site nearby former cotton industry facility in Duga Resa - DRF; industrial zone of Karlovac town - KIZ) in three sampling campaigns (May 2020, April and September 2021) encompassed analyses of physico-chemical water parameters, screening of 369 pesticides, measurement of metal (loid) concentrations in the sediments, and in the dissolved and particulate phases of the river-water. The sediment pollution was assessed through the analyses of total bacteria abundance (by targeting 16S rRNA genes), and their associated metal resistance genes (cnrA, pbrT and czcD) and class 1 integrons (intl1). At the DRF site, industrial organic contaminants that can be traced to textile production were detected (dye and nylon components), as well as increased levels of some metals bound to suspended particulate matter and sediments. At the most downstream KIZ site, occasional high level of industrial herbicide neburon was measured in the river-water, and metal contamination of suspended particulate matter and sediments was evident. Although, based on the comparison with legislation and literature data, the level of contamination was rather mild, the effects on microbial communities were unquestionable, confirmed by increased abundance of the czcD gene at DRF site and the intI1 gene at both industrially impacted sites. Obtained results indicated long-term sediment retention of some industrial contaminants at the places of historical freshwater contamination, and, thus, the necessity for their monitoring even after the termination of contamination sources.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| | | | - Željka Fiket
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Mavro Lučić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Nikolina Udiković Kolić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Ana Puljko
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Zagreb, Croatia
| | - Zvjezdana Šoštarić Vulić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Fran Barac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Zoran Kiralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Tomislav Kralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Damir Valić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
2
|
Dragun Z, Ivanković D, Krasnići N, Kiralj Z, Cvitanović M, Karamatić I, Valić D, Barac F, Filipović Marijić V, Mijošek T, Gjurčević E, Matanović K, Kužir S. Metal-binding biomolecules in the liver of northern pike (Esox lucius Linnaeus, 1758): The first data for the family Esocidae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109327. [PMID: 35276358 DOI: 10.1016/j.cbpc.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
Metal-handling strategies of various fish species are known to vary significantly in association with their intracellular metal behaviour. Thus, to better understand the possible consequences of increased metal exposure in fish it is important to perform comparative studies on metal-binding biomolecules in organs of different species. This study was the first of this kind on a liver of an esocid fish (northern pike, Esox lucius), and the gathered information were compared to fish belonging to three other families, Leuciscidae, Cyprinidae and Salmonidae. Distributions of ten elements among cytosolic biomolecules of different molecular masses were studied by size exclusion HPLC combined offline with high resolution ICP-MS. The results indicated predominant association of Co, Fe and Mo to high molecular mass biomolecules (>100 kDa), of Zn and Bi to both high and medium molecular mass biomolecules (>30 kDa), of Mn and Se to medium molecular mass biomolecules (30-100 kDa), and Ag, Cd and Cu to low molecular mass biomolecules (10-30 kDa), presumably metallothioneins. Evident binding to metallothioneins was also detected for Zn and Bi. For several metals, distinct differences were observed when cytosolic metal distributions of northern pike were compared to leuciscids, salmonids and cyprinids. More pronounced Zn binding to metallothioneins was recorded in leuciscids and cyprinids than both esocids and salmonids, whereas cytosolic Mn and Se distributions clearly differed between all studied fish families. Accordingly, in assessment of metal pollution it is vital to consider the exposed species, which requires prior comprehensive comparative research on numerous aquatic organisms.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Zoran Kiralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Marita Cvitanović
- Faculty of Science, Department of Biology, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Ivana Karamatić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Damir Valić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Fran Barac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Emil Gjurčević
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Krešimir Matanović
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Snježana Kužir
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| |
Collapse
|
3
|
Mijošek T, Filipović Marijić V, Dragun Z, Krasnići N, Ivanković D, Redžović Z, Erk M. First insight in trace element distribution in the intestinal cytosol of two freshwater fish species challenged with moderate environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149274. [PMID: 34375239 DOI: 10.1016/j.scitotenv.2021.149274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Cytosolic distribution of six essential elements and nonessential Cd among biomolecules of different molecular masses was investigated in the intestine of brown trout (Salmo trutta) from the karst Krka River and Prussian carp (Carassius gibelio) from the lowland Ilova River. Fish were sampled at two locations (reference and contaminated) and in two seasons (autumn and spring). Analyses were conducted by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Although studied salmonid and cyprinid fish have different biological characteristics, obtained profiles often showed mostly similar patterns in both species. Specifically, Cd and Cu were dominantly bound to metallothioneins in both species, but the same association was not observed for Zn, whereas Mo distribution was similar in the intestine of both fish species with two well shaped and clear peaks in HMM (100-400 kDa) and VLMM (2-8 kDa) range. In brown trout, Se was mostly associated with biomolecules of very low molecular masses (VLMM, <10 kDa), whereas significant additional elution in HMM region (30-303 kDa) was observed only in Prussian carp. Iron binding to VLMM biomolecules (1.8-14 kDa) was observed only in brown trouts, and of Zn in Prussian carps. Cobalt was mostly bound to HMM biomolecules (85-235 kDa) in brown trout and to VLMM biomolecules (0.7-18 kDa) in Prussian carp. Comparison of intestinal profiles with previously published data on liver and gills revealed some similarities in distribution, but also organ-specific differences due to the different function and composition of each organ. As so far there is no published data on intestinal trace metal distribution, the obtained results represent the novel findings, and the key point for the exact identification of specific metal-binding biomolecules which could eventually be used as biomarkers of metal exposure or effects.
Collapse
Affiliation(s)
- Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Zuzana Redžović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Anne A, Ebenezer SK, Guy Valerie DW, Pierre N, Cédric DC, Annie Stephanie N, Pierre François D, Noumsi Ives Magloire In Memorium K. Floristic surveys of some lowlands polluted of a tropical urban area: the case of Yaounde, Cameroon. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1191-1202. [PMID: 33765403 DOI: 10.1080/15226514.2021.1884183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study presents original results for field surveys in lowland sites polluted in Yaounde-Cameroon. The screening of 11 polluted lowlands compared to a natural lowland (unpolluted), made it possible to identify species which may exhibit the best capacities to adapt to environmental changes and to develop in contaminated areas, in particular heavy metals. This work can be a preliminary study around the species growing in contaminated lowlands. Thus, this study can be reproduced in other regions, to compare the results obtained and identify potential plants for the lowlands remediation in Cameroon.
Collapse
Affiliation(s)
- Ayo Anne
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Soh Kengne Ebenezer
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
- Department of Plant Biology, University of Bamenda, Bamenda, Cameroon
| | - Djumyom Wafo Guy Valerie
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Nbendah Pierre
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Djomo Chimi Cédric
- Institute of Agricultural Research for the Development (IRAD), Bertoua, Cameroon
| | - Nana Annie Stephanie
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
- Laboratory of Phytopathology, Biotechnology and Environment, Department of Plant Biology, University of Yaounde I, Yaounde, Cameroon
| | - Djocgoué Pierre François
- Department of Ecology and Natural Resources Management, Center for Development Research, Bonn, Germany
| | | |
Collapse
|
5
|
Ahmad H, Alharbi W, BinSharfan II, Khan RA, Alsalme A. Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions. Polymers (Basel) 2020; 12:E2370. [PMID: 33076461 PMCID: PMC7650783 DOI: 10.3390/polym12102370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cellulose nanofibers were covalently functionalized using diethylenetriamine penta (methylene phosphonic acid) and studied for the extraction of heavy metal ions. The surface-functionalized nanofibers showed a high adsorption capacity towards heavy metal ions as compared to bare nanofibers. The elemental composition and surface morphology of the prepared bio-adsorbent was characterized by X-ray photoelectron spectroscopy, attenuated total reflectance infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy. The prepared material was studied to develop a column-based solid phase extraction method for the preconcentration of trace metal ions and their determination by inductively coupled plasma optical emission spectroscopy. The batch experimental data was well fitted to Langmuir adsorption isotherms (R2 > 0.99) and follows pseudo-second-order kinetics. The experimental variables such as sample pH, equilibrium time, column breakthrough, sorption flow rate, the effect of coexisting ions, and eluent type were systematically studied and optimized accordingly. The detection limit of the proposed method was found to be 0.03, 0.05, and 0.04 µg L-1 for Cu(II), Pb(II), and Cd(II), respectively. Certified Reference Materials were analyzed to validate the proposed method against systematic and constant errors. At a 95% confidence level, the Student's t-test values were less than the critical Student's t value (4.302). The developed method was successfully employed for the preconcentration and determination of trace metal ions from real water samples such as river water and industrial effluent.
Collapse
Affiliation(s)
- Hilal Ahmad
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Walaa Alharbi
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia;
| | - Ibtisam I. BinSharfan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.); (R.A.K.)
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.); (R.A.K.)
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.); (R.A.K.)
| |
Collapse
|