1
|
Zhang X, Zhu Z, Zhang X, Al-Dhabi NA, Zhou L, Tang W, Wu P. Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater. BIORESOURCE TECHNOLOGY 2025; 419:132074. [PMID: 39814152 DOI: 10.1016/j.biortech.2025.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.7%, with anammox contributing over 93%. The dominant filamentous bacteria that supported the granular structure underwent significant changes throughout the operational period. Notably, the mature granular PD/A process demonstrated a distinct metabolic preference for recalcitrant, labile, and xenobiotic organics found in municipal wastewater. The biosynthesis of quorum sensing signaling molecules and core cofactors further enhanced the re-development and substrate metabolic adaptations of PD/A granules in real wastewater environments. This research illuminates the micro-ecological succession and metabolic heterogeneity of the granular PD/A process under mainstream loading.
Collapse
Affiliation(s)
- Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
2
|
Táncsics A, Bedics A, Banerjee S, Soares A, Baka E, Probst AJ, Kriszt B. Stable-isotope probing combined with amplicon sequencing and metagenomics identifies key bacterial benzene degraders under microaerobic conditions. Biol Futur 2024; 75:301-311. [PMID: 39044043 DOI: 10.1007/s42977-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
The primary aim of the present study was to reveal the major differences between benzene-degrading bacterial communities evolve under aerobic versus microaerobic conditions and to reveal the diversity of those bacteria, which can relatively quickly degrade benzene even under microaerobic conditions. For this, parallel aerobic and microaerobic microcosms were set up by using groundwater sediment of a BTEX-contaminated site and 13C labelled benzene. The evolved total bacterial communities were first investigated by 16S rRNA gene Illumina amplicon sequencing, followed by a density gradient fractionation of DNA and a separate investigation of "heavy" and "light" DNA fractions. Results shed light on the fact that the availability of oxygen strongly determined the structure of the degrading bacterial communities. While members of the genus Pseudomonas were overwhelmingly dominant under clear aerobic conditions, they were almost completely replaced by members of genera Malikia and Azovibrio in the microaerobic microcosms. Investigation of the density resolved DNA fractions further confirmed the key role of these two latter genera in the microaerobic degradation of benzene. Moreover, analysis of a previously acquired metagenome-assembled Azovibrio genome suggested that benzene was degraded through the meta-cleavage pathway by this bacterium, with the help of a subfamily I.2.I-type catechol 2,3-dioxygenase. Overall, results of the present study implicate that under limited oxygen availability, some potentially microaerophilic bacteria play crucial role in the aerobic degradation of aromatic hydrocarbons.
Collapse
Affiliation(s)
- András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary.
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| | - Sinchan Banerjee
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - André Soares
- Department of Chemistry, Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Erzsébet Baka
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| | - Alexander J Probst
- Department of Chemistry, Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| |
Collapse
|
3
|
Gao M, Li X, Zhang Q, Li S, Wu S, Wang Y, Sun H. Spatial distribution of volatile organic compounds in contaminated soil and distinct microbial effect driven by aerobic and anaerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172256. [PMID: 38583613 DOI: 10.1016/j.scitotenv.2024.172256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuelin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Liu Z, Heng S, Dai Q, Gao Y, Han Y, Hu L, Liu Y, Lu X, Zhen G. Simultaneous removal of antibiotic resistance genes and improved dewatering ability of waste activated sludge by Fe(II)-activated persulfate oxidation. WATER RESEARCH 2024; 253:121265. [PMID: 38340701 DOI: 10.1016/j.watres.2024.121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Waste activated sludge properties vary widely with different regions due to the difference in living standards and geographical distribution, making a big challenge to developing a universally effective sludge dewatering technique. The Fe(II)-activated persulfate (S2O82-) oxidation process shows excellent ability to disrupt sludge cells and extracellular polymeric substances (EPS), and release bound water from sludge flocs. In this study, the discrepancies in the physicochemical characteristics of sludge samples from seven representative cities in China (e.g., dewaterability, EPS composition, surface charge, microbial community, relative abundance of antibiotic resistance genes (ARGs), etc.) were investigated, and the role of Fe(II)-S2O82- oxidation in enhancing removal of antibiotic resistance genes and dewatering ability were explored. The results showed significant differences between the EPS distribution and chemical composition of sludge samples due to different treatment processes, effluent sources, and regions. The Fe(II)-S2O82- oxidation pretreatment had a good enhancement of sludge dewatering capacity (up to 76 %). Microbial analysis showed that the microbial community in each sludge varied significantly depending on the types of wastewater, the wastewater treatment processes, and the regions, but Fe(II)-S2O82- oxidation was able to attack and rupture the sludge zoogloea indiscriminately. Genetic analysis further showed that a considerable number of ARGs were detected in all of these sludge samples and that Fe(II)-S2O82- oxidation was effective in removing ARGs by higher than 90 %. The highly active radicals (e.g., SO4-·, ·OH) produced in this process caused drastic damage to sludge microbial cells and DNA stability while liberating the EPS/cell-bound water. Co-occurrence network analysis highlighted a positive correlation between population distribution and ARGs abundance, while variations in microbial communities were linked to regional differences in living standards and level of economic development. Despite these variations, the Fe(II)-S2O82- oxidation consistently achieved excellent performance in both ARGs removal and sludge dewatering. The significant modularity of associations between different microbial communities also confirms its ability to reduce horizontal gene transfer (HGT) by scavenging microbes.
Collapse
Affiliation(s)
- Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shiliang Heng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qicai Dai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingtian Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yisheng Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663N. Zhongshan Rd., Shanghai 200062, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
5
|
Tedesco P, Balzano S, Coppola D, Esposito FP, de Pascale D, Denaro R. Bioremediation for the recovery of oil polluted marine environment, opportunities and challenges approaching the Blue Growth. MARINE POLLUTION BULLETIN 2024; 200:116157. [PMID: 38364643 DOI: 10.1016/j.marpolbul.2024.116157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.
Collapse
Affiliation(s)
- Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Sergio Balzano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; Institute of Biochemistry and Cellular Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Renata Denaro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti Rome, Italy.
| |
Collapse
|
6
|
Guo L, Li L, Zhou S, Xiao P, Zhang L. Metabolomic insight into regulatory mechanism of heterotrophic bacteria nitrification-aerobic denitrification bacteria to high-strength ammonium wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130278. [PMID: 38168563 DOI: 10.1016/j.biortech.2023.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
This work aimed to elucidate the metabolic mechanism of heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria influenced by varying concentrations of ammonium nitrogen (NH4+-N) in high-strength synthetic wastewater treatment. The results showed that the removal rates of NH4+-N and total nitrogen, along with enzymatic activities related to nitrification and denitrification, increased with rising NH4+-N concentrations (N500:500 mg/L, N1000:1000 mg/L and N2000:2000 mg/L). The relative abundances of HN-AD bacteria were 50 %, 62 % and 82 % in the three groups. In the N2000 group, the cAMP signaling pathway, glycerophospholipid metabolites, purines and pyrimidines related to DNA/RNA synthesis, electron donor NAD+-related energy, the tricarboxylic acid (TCA) cycle and glutamate metabolism were upregulated. Therefore, influent NH4+-N at 2000 mg/L promoted glutamate metabolism to accelerate the TCA cycle, and enhanced cellular energy and advanced denitrification activity of bacteria for HN-AD. This mechanism, in turn, enhanced microbial growth and the carbon and nitrogen metabolism of bacteria for HN-AD.
Collapse
Affiliation(s)
- Lei Guo
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; School of Chemical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Longshan Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shibo Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - PengYing Xiao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
7
|
Corral-García LS, Molina MC, Bautista LF, Simarro R, Espinosa CI, Gorines-Cordero G, González-Benítez N. Bacterial Diversity in Old Hydrocarbon Polluted Sediments of Ecuadorian Amazon River Basins. TOXICS 2024; 12:119. [PMID: 38393214 PMCID: PMC10892221 DOI: 10.3390/toxics12020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
The Ecuadorian Amazon rainforest stands out as one of the world's most biodiverse regions, yet faces significant threats due to oil extraction activities dating back to the 1970s in the northeastern provinces. This research investigates the environmental and societal consequences of prolonged petroleum exploitation and oil spills in Ecuador's Amazon. Conducted in June 2015, the study involved a comprehensive analysis of freshwater sediment samples from 24 locations in the Rio Aguarico and Napo basins. Parameters such as water and air temperature, conductivity, soil pH, and hydrocarbon concentrations were examined. Total petroleum hydrocarbon (TPH) concentrations ranged from 9.4 to 847.4 mg kg-1, with polycyclic aromatic hydrocarbon (PAH) levels varying from 10.15 to 711.1 mg kg-1. The pristane/phytane ratio indicated historic hydrocarbon pollution in 8 of the 15 chemically analyzed sediments. Using non-culturable techniques (Illumina), bacterial analyses identified over 350 ASV, with prominent families including Comamonadaceae, Chitinophagaceae, Anaeromyxobacteraceae, Sphingomonadaceae, and Xanthobacteraceae. Bacterial diversity, assessed in eight samples, exhibited a positive correlation with PAH concentrations. The study provides insights into how microbial communities respond to varying levels of hydrocarbon pollution, shedding light on the enduring impact of oil exploitation in the Amazonian region. Its objective is to deepen our understanding of the environmental and human well-being in the affected area, underscoring the pressing need for remedial actions in the face of ongoing ecological challenges.
Collapse
Affiliation(s)
- Lara S. Corral-García
- Centro de Investigación en Biodiversidad y Cambio Global, Department of Ecology, Universidad Autónoma de Madrid, C/Darwin, 2, 28049 Madrid, Spain
| | - María Carmen Molina
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain;
| | - Raquel Simarro
- Plant Pathology Laboratory (DTEVL), INIA-CSIC, Ctra, de La Coruña, Km 7.5, 28040 Madrid, Spain;
| | - Carlos Iván Espinosa
- Department of Biological and Agricultural Sciences, Universidad Técnica Particular de Loja, San Cayetano alto s/n, Loja 1101608, Ecuador;
| | - Guillermo Gorines-Cordero
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| | - Natalia González-Benítez
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| |
Collapse
|
8
|
Wu Z, Yu X, Ji Y, Liu G, Gao P, Xia L, Li P, Liang B, Freilich S, Gu L, Qiao W, Jiang J. Flexible catabolism of monoaromatic hydrocarbons by anaerobic microbiota adapting to oxygen exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132762. [PMID: 37837778 DOI: 10.1016/j.jhazmat.2023.132762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Microbe-mediated anaerobic degradation is a practical method for remediation of the hazardous monoaromatic hydrocarbons (BTEX, including benzene, toluene, ethylbenzene and xylenes) under electron-deficient contaminated sites. However, how do the anaerobic functional microbes adapt to oxygen exposure and flexibly catabolize BTEX remain poorly understood. We investigated the switches of substrate spectrum and bacterial community upon oxygen perturbation in a nitrate-amended anaerobic toluene-degrading microbiota which was dominated by Aromatoleum species. DNA-stable isotope probing demonstrated that Aromatoleum species was involved in anaerobic mineralization of toluene. Metagenome-assembled genome of Aromatoleum species harbored both the nirBD-type genes for nitrate reduction to ammonium coupled with toluene oxidation and the additional meta-cleavage pathway for aerobic benzene catabolism. Once the anaerobic microbiota was fully exposed to oxygen and benzene, 1.05 ± 0.06% of Diaphorobacter species rapidly replaced Aromatoleum species and flourished to 96.72 ± 0.01%. Diaphorobacter sp. ZM was isolated, which was not only able to utilize benzene as the sole carbon source for aerobic growth and but also innovatively reduce nitrate to ammonium with citrate/lactate/glucose as the carbon source under anaerobic conditions. This study expands our understanding of the adaptive mechanism of microbiota for environmental redox disturbance and provides theoretical guidance for the bioremediation of BTEX-contaminated sites.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhan Ji
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Gao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Xia
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfa Li
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Lifeng Gu
- ChangXing AISHENG Environmental Technology Co., Ltd, Zhejiang 313199, China
| | - Wenjing Qiao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Bedics A, Táncsics A, Banerjee S, Tóth E, Harkai P, Gottschall GG, Bóka K, Kriszt B. Acidovorax benzenivorans sp. nov., a novel aromatic hydrocarbon-degrading bacterium isolated from a xylene-degrading enrichment culture. Int J Syst Evol Microbiol 2024; 74. [PMID: 38180316 DOI: 10.1099/ijsem.0.006219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A Gram-stain-negative strain, designated as D2M1T was isolated from xylene-degrading enrichment culture and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene sequence analysis revealed that strain D2M1T belongs to the genus Acidovorax, with the highest 16S rRNA gene similarity to Acidovorax delafieldii DSM 64T (99.93 %), followed by Acidovorax radicis DSM 23535T (98.77 %) and Acidovorax kalamii MTCC 12652T (98.76 %). The draft genome sequence of strain D2M1T is 5.49 Mb long, and the G+C content of the genome is 64.2 mol%. Orthologous average nucleotide identity and digital DNA-DNA hybridization relatedness values between strain D2M1T and its closest relatives were below the threshold values for species demarcation confirming that strain D2M1T is distinctly separated from its closest relatives. The whole genome analysis of the strain revealed a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including an I.2.C-type catechol 2,3-dioxygenase (C23O) gene. The strain was able to degrade benzene and ethylbenzene as sole sources of carbon and energy under aerobic and microaerobic conditions. Cells were facultatively aerobic rods and motile with a single polar flagellum. The predominant fatty acids (>10 % of the total) of strain D2M1T were summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major ubiquinone of strain D2M1T was Q8, while the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on polyphasic data, it is concluded that strain D2M1T represents a novel species of the genus Acidovorax, for which the name of Acidovorax benzenivorans sp. nov. is proposed. The type strain of the species is strain D2M1T (=DSM 115238T=NCAIM B.02679T).
Collapse
Affiliation(s)
- Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Sinchan Banerjee
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Harkai
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Gerda Georgina Gottschall
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
10
|
Chi Z, Liu X, Li H, Liang S, Luo YH, Zhou C, Rittmann BE. Co-metabolic biodegradation of chlorinated ethene in an oxygen- and ethane-based membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167323. [PMID: 37742949 DOI: 10.1016/j.scitotenv.2023.167323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Groundwater contamination by chlorinated ethenes is an urgent concern worldwide. One approach for detoxifying chlorinated ethenes is aerobic co-metabilims using ethane (C2H6) as the primary substrate. This study evaluated long-term continuous biodegradation of three chlorinated alkenes in a membrane biofilm reactor (MBfR) that delivered C2H6 and O2 via gas-transfer membranes. During 133 days of continuous operation, removals of dichloroethane (DCE), trichloroethene (TCE), and tetrachloroethene (PCE) were as high as 94 % and with effluent concentrations below 5 μM. In situ batch tests showed that the co-metabolic kinetics were faster with more chlorination. C2H6-oxidizing Comamonadaceae and "others," such as Methylococcaceae, oxidized C2H6 via monooxyenation reactions. The abundant non-ethane monooxygenases, particularly propane monooxygenase, appears to have been responsible for C2H6 aerobic metabolism and co-metabolism of chlorinated ethenes. This work proves that the C2H6 + O2 MBfR is a platform for ex-situ bioremediation of chlorinated ethenes, and the generalized action of the monooxygenases may make it applicable for other chlorinated organic contaminants.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Xinyang Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
11
|
Engloner AI, Vargha M, Kós P, Borsodi AK. Planktonic and epilithic prokaryota community compositions in a large temperate river reflect climate change related seasonal shifts. PLoS One 2023; 18:e0292057. [PMID: 37733803 PMCID: PMC10513243 DOI: 10.1371/journal.pone.0292057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
In freshwaters, microbial communities are of outstanding importance both from ecological and public health perspectives, however, they are threatened by the impact of global warming. To reveal how different prokaryotic communities in a large temperate river respond to environment conditions related to climate change, the present study provides the first detailed insight into the composition and spatial and year-round temporal variations of planktonic and epilithic prokaryotic community. Microbial diversity was studied using high-throughput next generation amplicon sequencing. Sampling was carried out monthly in the midstream and the littoral zone of the Danube, upstream and downstream from a large urban area. Result demonstrated that river habitats predominantly determine the taxonomic composition of the microbiota; diverse and well-differentiated microbial communities developed in water and epilithon, with higher variance in the latter. The composition of bacterioplankton clearly followed the prolongation of the summer resulting from climate change, while the epilithon community was less responsive. Rising water temperatures was associated with increased abundances of many taxa (such as phylum Actinobacteria, class Gammaproteobacteria and orders Synechococcales, Alteromonadales, Chitinophagales, Pseudomonadales, Rhizobiales and Xanthomonadales), and the composition of the microbiota also reflected changes of several further environmental factors (such as turbidity, TOC, electric conductivity, pH and the concentration of phosphate, sulphate, nitrate, total nitrogen and the dissolved oxygen). The results indicate that shift in microbial community responding to changing environment may be of crucial importance in the decomposition of organic compounds (including pollutants and xenobiotics), the transformation and accumulation of heavy metals and the occurrence of pathogens or antimicrobial resistant organisms.
Collapse
Affiliation(s)
- Attila I. Engloner
- Centre for Ecological Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Márta Vargha
- Department of Public Health Laboratories, National Public Health Centre, Budapest, Hungary
| | - Péter Kós
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, Szeged University, Szeged, Hungary
| | - Andrea K. Borsodi
- Centre for Ecological Research, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
12
|
Biodegradation of chemicals tested in mixtures and individually: mixture effects on biodegradation kinetics and microbial composition. Biodegradation 2023; 34:139-153. [PMID: 36595149 DOI: 10.1007/s10532-022-10009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Biodegradation in the aquatic environment occurs in the presence of many chemicals, while standard simulation biodegradation tests are conducted with single chemicals. This study aimed to investigate the effect of the presence of additional chemicals on (1) biodegradation kinetics of individual chemicals and (2) the microbial composition in test systems. Parallel mixture and single substance experiments were conducted for 9 chemicals (phenethyl benzoate, oxacycloheptadec-10-en-2-one, α-ionone, methyl 2-naphthyl ether, decan-5-olide, octan-2-one, 2'-acetonaphthanone, methyl N-methylanthranilate, (+)-menthone) using inoculum from a Danish stream. Biotic and abiotic test systems were incubated at 12 °C for 1-30 days. Primary biodegradation kinetics were then determined from biotic/abiotic peak area ratios using SPME GC/MS analysis. The effect of the mixture on biodegradation varied with test chemical and was more pronounced for chemicals with lag-phases above 14 days: two chemicals degraded in the mixture but not when tested alone (i.e., positive mixture effect), and two degraded when tested alone but not in the mixture (i.e., negative mixture effect). Microbial composition (16S rRNA gene amplicon sequencing) was highly affected by 14 days incubation and the presence of the mixture (significant carbon source), but less by single chemicals (low carbon source). Growth on chemical mixtures resulted in consistent proliferation of Pseudomonas and Malikia, while specific chemicals increased the abundance of putative degraders belonging to Novosphingobium and Zoogloea. The chemical and microbiological results support (1) that simulation biodegradation kinetics should be determined in mixtures at low environmentally relevant concentrations and (2) that degradation times beyond some weeks are associated with more uncertainty.
Collapse
|
13
|
Acosta M, Quiroz E, Tovar-Ramírez D, Roberto VP, Dias J, Gavaia PJ, Fernández I. Fish Microbiome Modulation and Convenient Storage of Aquafeeds When Supplemented with Vitamin K1. Animals (Basel) 2022; 12:ani12233248. [PMID: 36496769 PMCID: PMC9735498 DOI: 10.3390/ani12233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin necessary for fish metabolism and health. VK stability as dietary component during aquafeed storage and its potential effect on intestinal microbiome in fish have not yet been completely elucidated. The convenient storage conditions of aquafeeds when supplemented with phylloquinone (VK1), as well as its potential effects on the gut microbiota of Senegalese sole (Solea senegalensis) juveniles, have been explored. Experimental feeds were formulated to contain 0, 250 and 1250 mg kg-1 of VK1 and were stored at different temperatures (4, -20 or -80 °C). VK stability was superior at -20 °C for short-term (7 days) storage, while storing at -80 °C was best suited for long-term storage (up to 3 months). A comparison of bacterial communities from Senegalese sole fed diets containing 0 or 1250 mg kg-1 of VK1 showed that VK1 supplementation decreased the abundance of the Vibrio, Pseudoalteromonas, and Rhodobacterace families. All these microorganisms were previously associated with poor health status in aquatic organisms. These results contribute not only to a greater understanding of the physiological effects of vitamin K, particularly through fish intestinal microbiome, but also establish practical guidelines in the industry for proper aquafeed storage when supplemented with VK1.
Collapse
Affiliation(s)
- Marcos Acosta
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Eduardo Quiroz
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, Baja California Sur, La Paz 23096, BCS, Mexico
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Vânia Palma Roberto
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Paulo J. Gavaia
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
- Associação Oceano Verde–GreenCoLab, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
- Correspondence: or
| |
Collapse
|
14
|
Olicón-Hernández DR, Guerra-Sánchez G, Porta CJ, Santoyo-Tepole F, Hernández-Cortez C, Tapia-García EY, Chávez-Camarillo GM. Fundaments and Concepts on Screening of Microorganisms for Biotechnological Applications. Mini Review. Curr Microbiol 2022; 79:373. [PMID: 36302918 DOI: 10.1007/s00284-022-03082-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]
Abstract
Microbial biotechnology uses microorganisms and their derivatives to generate industrial and/or environmental products that impact daily life. Modern biotechnology uses proteomics, metabolomics, quantum processors, and massive sequencing methods to yield promising results with microorganisms. However, the fundamental concepts of microbial biotechnology focus on the specific search for microorganisms from natural sources and their correct analysis to implement large-scale processes. This mini-review focuses on the methods used for the isolation and selection of microorganisms with biotechnological potential to empathize the importance of these concepts in microbial biotechnology. In this work, a review of the state of the art in recent years on the selection and characterization of microorganisms with a basic approach to understanding the importance of fundamental concepts in the field of biotechnology was carried out. The proper selection of isolation sources and the design of suitable selection criteria according to the desired activity have generated substantial changes in the development of biotechnology for more than three decades. Some examples include Taq polymerase in the PCR method and CRISPR technology. The objective of this mini review is to establish general ideas for the screening of microorganisms based on basic concepts of biotechnology that are left aside in several articles and maintain the importance of the basic concepts that this implies in the development of modern biotechnology.
Collapse
Affiliation(s)
- Dario R Olicón-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México.
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Carla J Porta
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Fortunata Santoyo-Tepole
- Departamento de Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Cecilia Hernández-Cortez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Erika Y Tapia-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Griselda Ma Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| |
Collapse
|
15
|
Banerjee S, Bedics A, Tóth E, Kriszt B, Soares AR, Bóka K, Táncsics A. Isolation of Pseudomonas aromaticivorans sp. nov from a hydrocarbon-contaminated groundwater capable of degrading benzene-, toluene-, m- and p-xylene under microaerobic conditions. Front Microbiol 2022; 13:929128. [PMID: 36204622 PMCID: PMC9530055 DOI: 10.3389/fmicb.2022.929128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Pseudomonas are known to be widespread in hydrocarbon contaminated environments because of their remarkable ability to degrade a variety of petroleum hydrocarbons, including BTEX (benzene, toluene, ethylbenzene and xylene) compounds. During an enrichment investigation which aimed to study microaerobic xylene degradation in a legacy petroleum hydrocarbon-contaminated groundwater, a novel Gram-stain-negative, aerobic, motile and rod-shaped bacterial strain, designated as MAP12T was isolated. It was capable of degrading benzene, toluene, meta- and para- xylene effectively under both aerobic and microaerobic conditions. The 16S rRNA gene sequence analysis revealed that strain MAP12T belongs to the genus Pseudomonas, with the highest 16S rRNA gene similarity to Pseudomonas linyingensis LYBRD3-7 T (98.42%), followed by Pseudomonas sagittaria JCM 18195 T (98.29%) and Pseudomonas alcaliphila JCM 10630 T (98.08%). Phylogenomic tree constructed using a concatenated alignment of 92 core genes indicated that strain MAP12T is distinct from any known Pseudomonas species. The draft genome sequence of strain MAP12T is 4.36 Mb long, and the G+C content of MAP12T genome is 65.8%. Orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) analyses confirmed that strain MAP12T is distinctly separated from its closest neighbors (OrthoANI < 89 %; dDDH < 36%). Though several members of the genus Pseudomonas are well known for their aerobic BTEX degradation capability, this is the first report of a novel Pseudomonas species capable of degrading xylene under microaerobic conditions. By applying genome-resolved metagenomics, we were able to partially reconstruct the genome of strain MAP12 T from metagenomics sequence data and showed that strain MAP12 T was an abundant member of the xylene-degrading bacterial community under microaerobic conditions. Strain MAP12T contains ubiquinone 9 (Q9) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine as major polar lipids. The major cellular fatty acids of strain MAP12T are summed feature 3 (C16:1ω6c and/or C16:1ω7c), C16:0 and summed feature 8 (C18:1ω6c and/or C18:1ω7c). The results of this polyphasic study support that strain MAP12T represents a novel species of the genus Pseudomonas, hence the name of Pseudomonas aromaticivorans sp. nov. is proposed for this strain considering its aromatic hydrocarbon degradation capability. The type strain is MAP12T (=LMG 32466, =NCAIM B.02668).
Collapse
Affiliation(s)
- Sinchan Banerjee
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - André R. Soares
- Group for Aquatic Microbial Ecology, Institute for Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
16
|
Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek 2022; 115:1113-1128. [PMID: 35841500 PMCID: PMC9363352 DOI: 10.1007/s10482-022-01759-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).
Collapse
|
17
|
Zhang Y, Ji T, Jiang Y, Zheng C, Yang H, Liu Q. Long-term effects of three compound probiotics on water quality, growth performances, microbiota distributions and resistance to Aeromonas veronii in crucian carp Carassius auratus gibelio. FISH & SHELLFISH IMMUNOLOGY 2022; 120:233-241. [PMID: 34848306 DOI: 10.1016/j.fsi.2021.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Probiotics could promote the healthy growth of aquatic animals and have been widely used in aquaculture. However, the influence of high concentration compound probiotics on the aquatic animals has not been reported. In the present study, a compound probiotics was used in high-density culture of crucian carps under the condition of micro-water exchange. During nearly 7-weeks feeding experiment, the aquaculture water quality, growth performances, disease resistance and microbiota distributions of crucian carps were tested. Under the high concentrations of compound probiotics, the content of total ammonia nitrogen and nitrite were finally in a state of dynamic equilibrium. The body length and weight of crucian carps in the experimental group (E) was significantly higher than that in the recirculating group (R). The antioxidant enzymes in the intestines and gills of the E group including SOD, CAT, GSH and MDA, were significantly higher than those in R group. The mortality of crucian carps in E group was significantly lower after the immersion infection of Aeromonas veronii. The addition of compound probiotics significantly increased the number of microorganisms detected in the intestines and gills of crucian carps in E group. The bacteria including Firmicutes, Planctomycetes, Verrucomicrobiota at the phylum level in E group were higher than those in R group. At the genus level, these bacteria (Pirellula, Roseimicrobium, Malikia) were not only higher in E group water, but also significantly higher in the intestines and gills than R group. The results of present study systematically analyzed the impact of high-concentration probiotics on crucian carps breeding, and speculated genus Pirellula, Roseimicrobium, Malikia may be used as aquatic probiotics. The present study will provide a new idea for the green and sustainable development of aquaculture.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chen Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, China.
| |
Collapse
|
18
|
Wu J, Bian J, Wan H, Sun X, Li Y. Probabilistic human health-risk assessment and influencing factors of aromatic hydrocarbon in groundwater near urban industrial complexes in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149484. [PMID: 34392216 DOI: 10.1016/j.scitotenv.2021.149484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/04/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Organic pollutants are common in the environment, very difficult to remove, and pose a serious threat to human health. Probabilistic risk assessment advances conservative single-point estimation and brings a new perspective to risk assessment. From 2009 to 2019, we monitored the distribution of major pollutants in an industrial park in Northeastern China. The result showed the maximum concentration of benzene reached 73,680 μg/L in 2009, benzo[a]pyrene reached 36.80 ng/L in 2016. These concentrations are significantly above the levels set by Chinese regulatory agencies. The single-factor index increases year by year, and pollutants gradually spread from the pollution leakage source to surrounding areas. A new method was used to quantify the human health risk from groundwater organic pollution accurately, based on the triangular fuzzy numbers coupled with the Monte Carlo simulation. The Monte Carlo simulation was used to simulate the triangular fuzzy numbers. This simplified the operation between the triangular fuzzy numbers and their function successfully and obtained the risk as a set of values. The results indicated that non-carcinogenic risk was negligible in all age groups (children, adolescents, and adults). Conversely, when it comes to carcinogenic risks, adults were about 50-270 times the tolerable level of risk due to long exposure years and wide skin contact areas. Oral ingestion played an essential role in total exposure (>90%) compared to dermal contact. Control of exposure duration and intake should be prioritized when making decisions to reduce risk uncertainty. Monte Carlo simulation-triangular fuzzy numbers can effectively reduce the risk of uncertainty and reflect the complex conditions of the groundwater environment for small amounts of data or inaccurate data.
Collapse
Affiliation(s)
- Juanjuan Wu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Jianmin Bian
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China.
| | - Hanli Wan
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Xiaoqing Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Yanmei Li
- Department of Mine, Metallurgy and Geology Engineering, Engineering Division, Campus of Guanajuato, University of Guanajuato, Guanajuato C.P. 36020, Mexico
| |
Collapse
|
19
|
Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System. Microorganisms 2021; 9:microorganisms9102134. [PMID: 34683455 PMCID: PMC8540373 DOI: 10.3390/microorganisms9102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Chemicals of emerging concern (CEC) in pig farm breeding wastewater, such as antibiotics, will soon pose a serious threat to public health. It is therefore essential to consider improving the treatment efficiency of piggery wastewater in terms of microorganisms. In order to optimize the overall piggery wastewater treatment system from the perspective of the bacterial community structure and its response to environmental factors, five samples were randomly taken from each area of a piggery’s wastewater treatment system using a random sampling method. The bacterial communities’ composition and their correlation with wastewater quality were then analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the bacterial community composition of each treatment unit was similar. However, differences in abundance were significant, and the bacterial community structure gradually changed with the process. Proteobacteria showed more adaptability to an anaerobic environment than Firmicutes, and the abundance of Tissierella in anaerobic zones was low. The abundance of Clostridial (39.02%) and Bacteroides (20.6%) in the inlet was significantly higher than it was in the aerobic zone and the anoxic zone (p < 0.05). Rhodocyclaceae is a key functional microbial group in a wastewater treatment system, and it is a dominant microbial group in activated sludge. Redundancy analysis (RDA) showed that chemical oxygen demand (COD) had the greatest impact on bacterial community structure. Total phosphorus (TP), total nitrogen (TN), PH and COD contents were significantly negatively correlated with Sphingobacteriia, Betaproteobacteria and Gammaproteobacteria, and significantly positively correlated with Bacteroidia and Clostridia. These results offer basic data and theoretical support for optimizing livestock wastewater treatment systems using bacterial community structures.
Collapse
|
20
|
Valkanas MM, Rosso T, Packard JE, Trun NJ. Limited carbon sources prevent sulfate remediation in circumneutral abandoned mine drainage. FEMS Microbiol Ecol 2021; 97:6070647. [PMID: 33417684 DOI: 10.1093/femsec/fiaa262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023] Open
Abstract
Passive remediation systems (PRS) use both biotic and abiotic processes to precipitate contaminants from abandoned mine drainage (AMD) so that the contaminants do not spread into local watersheds. PRS are efficient at removing heavy metals but sulfate remediation frequently does not occur. To understand the reasons for the lack of sulfate remediation, we studied four PRS that treat circumneutral AMD and one raw mine drainage discharge. Using 16S sequencing analysis, microbial community composition revealed a high relative abundance of bacterial families with sulfur cycling genera. Anaerobic abiotic studies showed that sulfide was quickly geochemically oxidized in the presence of iron hydroxides, leading to a buildup of sulfur intermediates. Supplementation of laboratory grown microbes from the PRS with lactate demonstrated the ability of actively growing microbes to overcome this abiotic sulfide oxidation by increasing the rate of sulfate reduction. Thus, the lack of carbon sources in the PRS contributes to the lack of sulfate remediation. Bacterial community analysis of 16S rRNA gene revealed that while the microbial communities in different parts of the PRS were phylogenetically distinct, the contaminated environments selected for communities that shared similar metabolic capabilities.
Collapse
Affiliation(s)
- Michelle M Valkanas
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Taylor Rosso
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Jessica E Packard
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Nancy J Trun
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| |
Collapse
|
21
|
Banerjee S, Táncsics A, Tóth E, Révész F, Bóka K, Kriszt B. Hydrogenophaga aromaticivorans sp. nov., isolated from a para-xylene-degrading enrichment culture, capable of degrading benzene, meta- and para-xylene. Int J Syst Evol Microbiol 2021; 71. [PMID: 33688800 DOI: 10.1099/ijsem.0.004743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A benzene, para- and meta-xylene-degrading Gram-stain-negative, aerobic, yellow-pigmented bacterium, designated as D2P1T, was isolated from a para-xylene-degrading enrichment culture. Phylogenetic analyses based on 16S rRNA genes showed that D2P1T shares a distinct phyletic lineage within the genus Hydrogenophaga and shows highest 16S rRNA gene sequence similarity to Hydrogenophaga taeniospiralis NBRC 102512T (99.2 %) and Hydrogenophaga palleronii NBRC 102513T (98.3 %). The draft genome sequence of D2P1T is 5.63 Mb long and the genomic DNA G+C content is 65.5 %. Orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) analyses confirmed low genomic relatedness to its closest relatives (OrthoANI <86 %; dDDH <30 %). D2P1T contains ubiquinone 8 (Q-8) as the only respiratory quinone and phospholipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol as major polar lipids. The main whole-cell fatty acids of D2P1T are summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The polyphasic taxonomic results indicated that strain D2P1T represents a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga aromaticivorans sp. nov. is proposed. The type strain is D2P1T (=LMG 31780T=NCAIM B 02655T).
Collapse
Affiliation(s)
- Sinchan Banerjee
- Regional University Center of Excellence in Environmental Industry, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary.,Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Fruzsina Révész
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary.,Regional University Center of Excellence in Environmental Industry, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Balázs Kriszt
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary.,Regional University Center of Excellence in Environmental Industry, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary
| |
Collapse
|
22
|
Figueroa-Gonzalez PA, Bornemann TLV, Adam PS, Plewka J, Révész F, von Hagen CA, Táncsics A, Probst AJ. Saccharibacteria as Organic Carbon Sinks in Hydrocarbon-Fueled Communities. Front Microbiol 2020; 11:587782. [PMID: 33424787 PMCID: PMC7786006 DOI: 10.3389/fmicb.2020.587782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023] Open
Abstract
Organisms of the candidate phylum Saccharibacteria have frequently been detected as active members of hydrocarbon degrading communities, yet their actual role in hydrocarbon degradation remained unclear. Here, we analyzed three enrichment cultures of hydrocarbon-amended groundwater samples using genome-resolved metagenomics to unravel the metabolic potential of indigenous Saccharibacteria. Community profiling based on ribosomal proteins revealed high variation in the enrichment cultures suggesting little reproducibility although identical cultivation conditions were applied. Only 17.5 and 12.5% of the community members were shared between the three enrichment cultures based on ribosomal protein clustering and read mapping of reconstructed genomes, respectively. In one enrichment, two Saccharibacteria strains dominated the community with 16.6% in relative abundance and we were able to recover near-complete genomes for each of them. A detailed analysis of their limited metabolism revealed the capacity for peptide degradation, lactate fermentation from various hexoses, and suggests a scavenging lifestyle with external retrieval of molecular building blocks. In contrast to previous studies suggesting that Saccharibacteria are directly involved in hydrocarbon degradation, our analyses provide evidence that these organisms can be highly abundant scavengers acting rather as organic carbon sinks than hydrocarbon degraders in these communities.
Collapse
Affiliation(s)
- Perla Abigail Figueroa-Gonzalez
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Panagiotis S Adam
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Julia Plewka
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Fruzsina Révész
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllõ, Hungary.,Department of Environmental Protection and Environmental Safety, Szent István University, Gödöllõ, Hungary
| | - Christian A von Hagen
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllõ, Hungary.,Department of Environmental Protection and Environmental Safety, Szent István University, Gödöllõ, Hungary
| | - Alexander J Probst
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Evaluation of Parallel-Series Configurations of Two-Phase Partitioning Biotrickling Filtration and Biotrickling Filtration for Treating Styrene Gas-Phase Emissions. SUSTAINABILITY 2020. [DOI: 10.3390/su12176740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The removal of styrene from industrial representative gaseous emissions was studied using two reactors connected in series: a two-phase partitioning biotrickling filter (TPPB-BTF) and a conventional biotrickling filter (BTF). The system was operated under industrial conditions, which included steady and transient conditions and intermittent spraying. Silicone oil was used in the TPPB-BTF with a quantity as low as 25 mL L−1, promoting a faster start-up compared to the BTF. By working at a styrene loading of 30 g m−3 h−1, nearly complete removal efficiency (RE) was obtained. In addition, the removal was not adversely impacted by using non-steady emission patterns such as overnight shutdowns (97% RE) and oscillating concentrations (95% RE), demonstrating its viability for industrial applications. After 2 months from inoculation, two additional configurations (reverse series BTF + TPPB-BTF and parallel) were tested, showing the series configuration as the best approach to consistently achieve RE > 95%. After 51 days of operation, high throughput sequencing revealed a sharp decrease in the bacterial diversity. In both reactors, the microorganisms belonging to the Comamonadaceae family were predominant and other styrene degraders such as Pseudomonadaceae proliferated preferably in the first reactor.
Collapse
|