1
|
Wang Z, Wang Q, Lu B, Zhao C, Chai W, Huang Z, Li P, Zhao Y. Biogas slurry treatment and biogas upgrading by microalgae-based systems under the induction of different phytohormones. BIORESOURCE TECHNOLOGY 2024; 414:131569. [PMID: 39366512 DOI: 10.1016/j.biortech.2024.131569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The low grade of biogas and the difficulty of treating biogas slurry are the two major bottlenecks limiting the sustainable development of the fermentation engineering. This study investigates the potential role of microalgae-microbial symbiosis and phytohormones in solving this challenge. Chlorella microalgae were combined with endophytic bacteria (S395-2) and Clonostachys fungus to construct symbiotic systems. Growth, photosynthetic activity, and carbon dioxide and pollutant removal out of biogas slurry and biogas were analyzed under treatment with three different phytohormones (cytokinin, synthetic strigolactones (GR24), natural strigolactones). The Chlorella-S395-2-Clonostachys symbiont achieved the highest purification efficiency under GR24 induction, with removal efficiency exceeding 86% for chemical oxygen demand, total phosphorous, and total nitrogen, as well as over 76% for CO2. Economic efficiency can be increased by about 150%. The positive correlation between treatment effectiveness and co-culture performance suggests a promising avenue for developing symbiotic systems for biogas slurry treatment and biogas upgrading.
Collapse
Affiliation(s)
- Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - QiaoLi Wang
- Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430000, PR China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, PR China
| | - Chunzhi Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Wenbo Chai
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - Zijuan Huang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - PeiYing Li
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - Yongjun Zhao
- School of engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
2
|
Gong L, Ma X, Zhang S, Guo C, Zhou J, Zhao Y. The effect of initial inoculation amount of microalgae on synergistic purification of biogas slurry. ENVIRONMENTAL TECHNOLOGY 2024; 45:4346-4358. [PMID: 37746747 DOI: 10.1080/09593330.2023.2250545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/05/2023] [Indexed: 09/26/2023]
Abstract
In this study, Chlorella and Scenedesmus were inoculated in biogas slurry medium with initial inoculum (OD680) of 0.05, 0.1, 0.2, and 0.3, respectively, and 5% CO2 was continuously injected. The study aimed to examine the carbon sequestration capacity of Chlorella and Scenedesmus, as well as the effectiveness of removing pollutants such as TN, TP, and COD in biogas slurry medium. Additionally, an economic efficiency analysis of energy consumption was conducted. The group with an initial inoculum (OD680) of 0.3 for both types of microalgae exhibited better tolerance to pollutants, entered the logarithmic growth stage earlier, promoted nutrient removal, achieved higher energy efficiency, and reduced carbon emissions compared to the other groups. The highest carbon sequestration rates were 18.03% for Chlorella and 11.05% for Scenedesmus. Furthermore, Chlorella demonstrated corresponding nutrient removal efficiencies of 83.03% for TN, 99.84% for TP, and 90.06% for COD, while Scenedesmus exhibited removal efficiencies of 66.35% for TN, 98.74% for TP, and 77.71% for COD. The highest energy efficiency for pollutants and CO2 removal rates for Chlorella were 49.51 ± 2.20 and 9.91 ± 0.44 USD-1, respectively. In conclusion, the findings demonstrate the feasibility of using microalgae for simultaneous purification of biogas and biogas slurry.
Collapse
Affiliation(s)
- Lei Gong
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xiaofan Ma
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Shijun Zhang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Chunqian Guo
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Jun Zhou
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Yuhang Zhao
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, Sun Y, Zhu J, Guo L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168822. [PMID: 38043821 DOI: 10.1016/j.scitotenv.2023.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.
Collapse
Affiliation(s)
- Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Aldaby ESE, Mahmoud AHA, El-Bery HM, Ali MM, Shoreit AA, Mawad AMM. Microalgal upgrading of the fermentative biohydrogen produced from Bacillus coagulans via non-pretreated plant biomass. Microb Cell Fact 2023; 22:190. [PMID: 37730554 PMCID: PMC10512583 DOI: 10.1186/s12934-023-02193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Hydrogen is a promising source of alternative energy. Fermentative production is more feasible because of its high hydrogen generation rate, simple operating conditions, and utilization of various organic wastes as substrates. The most significant constraint for biohydrogen production is supplying it at a low cost with fewer impurities. RESULTS Leaf biomass of Calotropis procera was used as a feedstock for a dark fermentative production of hydrogen by Bacillus coagulans AH1 (MN923076). The optimum operation conditions for biohydrogen production were 5.0% substrate concentrationand pH 9.0, at 35 °C. In which the biohydrogen yield was 3.231 mmol H2/g dry biomass without any pretreatments of the biomass. A freshwater microalga Oscillatroia sp was used for upgrading of the produced biohydrogen. It sequestrated 97 and 99% % of CO2 from the gas mixture when it was cultivated in BG11 and BG11-N media, respectively After upgrading process, the residual microalgal cells exhibited 0.21mg/mL of biomass yield,high content of chlorophyll-a (4.8 µg/mL) and carotenoid (11.1 µg/mL). In addition to Oscillatroia sp residual biomass showed a lipid yield (7.5-8.7%) on the tested media. CONCLUSION Bacillus coagulans AH1 is a promising tool for biohydrogen production avoiding the drawbacks of biomass pretreatment. Oscillatroia sp is encouraged as a potent tool for upgrading and purification of biohydrogen. These findings led to the development of a multiproduct biorefinery with zero waste that is more economically sustainable.
Collapse
Affiliation(s)
- Eman S E Aldaby
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Aya H A Mahmoud
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Haitham M El-Bery
- Green Hydrogen Production Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt.
| | - Maysa M Ali
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Ahmed A Shoreit
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Asmaa M M Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
- Department of Biology, College of Science, Taibah University, 42317-8599, Madinah, Saudi Arabia
| |
Collapse
|
5
|
Dias F, Vargas J, Martins L, Rosa M, Balmant W, Mariano A, Parise J, Ordonez J, Kava V. Modeling, simulation, and optimization of hydrogen production from microalgae in compact photobioreactors. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Algal-fungal interactions and biomass production in wastewater treatment: Current status and future perspectives. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Han T, Han X, Ye X, Xi Y, Zhang Y, Guan H. Applying mixotrophy strategy to enhance biomass production and nutrient recovery of Chlorella pyrenoidosa from biogas slurry: An assessment of the mixotrophic synergistic effect. BIORESOURCE TECHNOLOGY 2022; 366:128185. [PMID: 36307028 DOI: 10.1016/j.biortech.2022.128185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Using biogas slurry to cultivate microalgae can simultaneously obtain microalgal biomass and allow nutrient recovery. Mixotrophic microalgae are widely recognized for their high biomass accumulation and low light dependence, making it possible to overcome the drawbacks of photoautotrophy. In this study, three complete metabolic modes of photoautotrophy, heterotrophy, mixotrophy and two incomplete metabolic modes with the addition of diuron and rotenone were applied to investigate Chlorella pyrenoidosa growth in biogas slurry. The results showed that the mixotrophic group obtained 1.15 g/L biomass, 30 % starch content, 99.40 % ammonium removal and 81.69 % total phosphorus removal, which were highly promoted compared to the others. The decline in chlorophyll, the simultaneous downregulation of Rubisco and citrate synthase and the increase in the actual quantum yield of PSII under mixotrophy revealed a synergistic effect: the complementation of photophosphorylation and oxidative phosphorylation greatly contributed to maximizing energy metabolism efficiency and minimizing energy dissipation loss.
Collapse
Affiliation(s)
- Ting Han
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xiaotan Han
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210014, China
| | - Xiaomei Ye
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Yonglan Xi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yingpeng Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Huibo Guan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Wang K, Li D, Zhao H, Li X, Sheng X. Unraveling the synergic effect of H2O in CO2 capture by aminoalcohols. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Liang L, Bai X, Hua Z. Enhancement of the immobilization on microalgae protective effects and carbamazepine removal by Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79567-79578. [PMID: 35715671 DOI: 10.1007/s11356-022-21418-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Carbamazepine (CBZ) has drawn extensive attention due to their environmental threats. In this study, polyvinyl alcohol-sodium alginate polymers to immobilize Chlorella vulgaris (FACHB-8) were used to investigate whether immobilization can facilitate microalgae to alleviate the CBZ stress and enhance CBZ removal. The results showed that after immobilized treatment, the biomass of microalgae increased by approximately 20%, the maximum level of malondialdehyde content decreased from 28 to 13 μmol/g, and the photosynthetic capacity of FV/FM recovered to 90% of the control group. The CBZ removal rate increased from 67 to 84% by immobilization at a CBZ concentration of 80 mg·L-1. The results indicated that immobilization technology can effectively protect microalgae from CBZ toxicity and improve the removal of CBZ, especially at high concentrations (> 50 mg/L). Biodegradation was the dominant pathway for microalgae to remove carbamazepine. This study added the understanding of the microalgae responses under immobilization and the interactions between immobilized microalgae and CBZ removal, thereby providing a novel insight into microalgae technology in high concentration wastewater treatments.
Collapse
Affiliation(s)
- Lu Liang
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China
| | - Xue Bai
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China
| | - Zulin Hua
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China.
| |
Collapse
|
10
|
Yang W, Li S, Qv M, Dai D, Liu D, Wang W, Tang C, Zhu L. Microalgal cultivation for the upgraded biogas by removing CO 2, coupled with the treatment of slurry from anaerobic digestion: A review. BIORESOURCE TECHNOLOGY 2022; 364:128118. [PMID: 36252758 DOI: 10.1016/j.biortech.2022.128118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Biogas is the gaseous by product generated from anaerobic digestion (AD), which is mainly composed of methane and CO2. Numerous independent studies have suggested that microalgae cultivation could achieve high efficiency for nutrient uptake or CO2 capture from AD, respectively. However, there is no comprehensive review on the purifying slurry from AD and simultaneously upgrading biogas via microalgal cultivation technology. This paper aims to fill this gap by presenting and discussing an information integration system based on microalgal technology. Furthermore, the review elaborates the mechanisms, configurations, and influencing factors of integrated system and analyzes the possible challenges for practical engineering applications and provides some feasibility suggestions eventually. There is hope that this review will offer a worthwhile and practical guideline to researchers, authorities and potential stakeholders, to promote this industry for sustainable development.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dian Dai
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Wei Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Chunming Tang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
11
|
Shao H, Sun Y, Jiang X, Hu J, Guo C, Lu C, Guo F, Sun C, Wang Y, Dai C. Towards biomass production and wastewater treatment by enhancing the microalgae-based nutrients recovery from liquid digestate in an innovative photobioreactor integrated with dialysis bag. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115337. [PMID: 35642812 DOI: 10.1016/j.jenvman.2022.115337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Microalgae-based nutrients recovery from liquid anaerobic digestate of swine manure has been a hotspot in recent decades. Nevertheless, in consideration of the high NH4+-N content and poor light penetrability exhibited by the original liquid digestate, uneconomical pretreatment on liquid digestate including centrifugation and dilution are indispensable before microalgae cells inoculation. Herein, aiming at eliminating the energy-intensive and freshwater-consuming pretreatment on liquid digestate and enhancing microalgae growth, the dialysis bag which permits nutrients transferring across its wall surface whereas retains almost all matters characterized by impeding light transmission within the raw liquid digestate was integrated into a column photobioreactor (DB-PBR). Consequently, light availability of microalgae cells in DB-PBR was elevated remarkably and thus contributed to a 357.58% improvement on microalgae biomass concentration in DB-PBR than the conventional PBR under 80 μmol m-2 s-1. Likewise, superior nutrients removal efficiencies from liquid digestate were obtained in DB-PBR (NH4+-N: 74.84%, TP: 63.75%) over the conventional PBR (NH4+-N: 30.27%, TP: 16.86%). Furthermore, higher microalgae biomass concentration (1.87 g L-1) and nutrients removal efficiencies (NH4+-N: 95.12%, TP: 76.87%) were achieved in the DB-PBR by increasing the light intensity to 140 μmol m-2 s-1. More importantly, the DB-PBR may provide a simple and greener solution to purify other kinds of wastewater.
Collapse
Affiliation(s)
- Han Shao
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yahui Sun
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China; School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China; Hebei Provincial Lab of Water Environmental Sciences, Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang, 050037, China.
| | - Xiaoxiang Jiang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jun Hu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chenglong Guo
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chenjia Lu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Feihong Guo
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yunjun Wang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chuanchao Dai
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
12
|
Goswami RK, Agrawal K, Mehariya S, Verma P. Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: an emerging and foreseeable sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61905-61937. [PMID: 34618318 DOI: 10.1007/s11356-021-16860-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Urbanization is a revolutionary and necessary step for the development of nations. However, with development emanates its drawback i.e., generation of a huge amount of wastewater. The existence of diverse types of nutrient loads and toxic compounds in wastewater can reduce the pristine nature of the ecosystem and adversely affects human and animal health. The conventional treatment system reduces most of the chemical contaminants but their removal efficiency is low. Thus, microalgae-based biological wastewater treatment is a sustainable approach for the removal of nutrient loads from wastewater. Among various microalgae, Tetraselmis sp. is a robust strain that can remediate industrial, municipal, and animal-based wastewater and reduce significant amounts of nutrient loads and heavy metals. The produced biomass contains lipids, carbohydrates, and pigments. Among them, carbohydrates and lipids can be used as feedstock for the production of bioenergy products. Moreover, the usage of a photobioreactor (PBR) system improves biomass production and nutrient removal efficiency. Thus, the present review comprehensively discusses the latest studies on Tetraselmis sp. based wastewater treatment processes, focusing on the use of different bioreactor systems to improve pollutant removal efficiency. Moreover, the applications of Tetraselmis sp. biomass, advancement and research gap such as immobilized and co-cultivation have also been discussed. Furthermore, an insight into the harvesting of Tetraselmis biomass, effects of physiological, and nutritional parameters for their growth has also been provided. Thus, the present review will broaden the outlook and help to develop a sustainable and feasible approach for the restoration of the environment.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | | | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
13
|
Sun L, Zhao C, Sun S, Hu C, Zhao Y, Liu J. Nutrient and tetracycline removal from simulated biogas slurry and biogas upgrading by microalgae cultivation under different carbon nanotubes concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8538-8548. [PMID: 34491496 DOI: 10.1007/s11356-021-16341-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The present study sought to determine the effects of multi-walled carbon nanotubes (MWCNTs) concentrations (0-10 mg L-1) on tetracycline (TC) and biogas slurry nutrient removal by microalga Chlorella vulgaris cultivation. Treatments with 1 mg L-1 MWCNTs yielded the maximum chlorophyll a content, dry weight, and algal density of 143.73 ± 3.11 μg L-1, 0.81 ± 0.008 g L-1, and 5.83×107 cells L-1, respectively, suggesting that 1 mg L-1 MWCNTs could enhance microalgal growth performance and photosynthesis effectively. The highest removal rates of chemical oxygen demand, total phosphorus, total nitrogen, TC, and CO2 under 1 mg L-1 MWCNTs were 90.43 ± 5.15%, 78.12 ± 4.33%, 77.07 ± 4.12%, 89.64 ± 3.08%, and 64.26 ± 0.71%, respectively. These results elucidated that moderate MWCNTs concentrations might promote TC and nutrient removal by enhancing Chlorella vulgaris photosynthesis activity.
Collapse
Affiliation(s)
- Li Sun
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, People's Republic of China
| | - Chunzhi Zhao
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, People's Republic of China
| | - Shiqing Sun
- Nanhu College, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| |
Collapse
|
14
|
Zhu QL, Wu B, Pisutpaisal N, Wang YW, Ma KD, Dai LC, Qin H, Tan FR, Maeda T, Xu YS, Hu GQ, He MX. Bioenergy from dairy manure: technologies, challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148199. [PMID: 34111785 DOI: 10.1016/j.scitotenv.2021.148199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Dairy manure (DM) is a kind of cheap cellulosic biomass resource which includes lignocellulose and mineral nutrients. Random stacks not only leads damage to the environment, but also results in waste of natural resources. The traditional ways to use DM include returning it to the soil or acting as a fertilizer, which could reduce environmental pollution to some extent. However, the resource utilization rate is not high and socio-economic performance is not utilized. To expand the application of DM, more and more attention has been paid to explore its potential as bioenergy or bio-chemicals production. This article presented a comprehensive review of different types of bioenergy production from DM and provided a general overview for bioenergy production. Importantly, this paper discussed potentials of DM as candidate feedstocks not only for biogas, bioethanol, biohydrogen, microbial fuel cell, lactic acid, and fumaric acid production by microbial technology, but also for bio-oil and biochar production through apyrolysis process. Additionally, the use of manure for replacing freshwater or nutrients for algae cultivation and cellulase production were also discussed. Overall, DM could be a novel suitable material for future biorefinery. Importantly, considerable efforts and further extensive research on overcoming technical bottlenecks like pretreatment, the effective release of fermentable sugars, the absence of robust organisms for fermentation, energy balance, and life cycle assessment should be needed to develop a comprehensive biorefinery model.
Collapse
Affiliation(s)
- Qi-Li Zhu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China; Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino,Wakamatsu, Kitakyushu 808-0196, Japan.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Nipon Pisutpaisal
- The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
| | - Yan-Wei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Ke-Dong Ma
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Li-Chun Dai
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Han Qin
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Fu-Rong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino,Wakamatsu, Kitakyushu 808-0196, Japan.
| | - Yan-Sheng Xu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Guo-Quan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Ming-Xiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China; Chengdu National Agricultural Science and Technology Center, Chengdu, PR China.
| |
Collapse
|
15
|
Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plastic production has been increasing at enormous rates. Particularly, the socioenvironmental problems resulting from the linear economy model have been widely discussed, especially regarding plastic pieces intended for single use and disposed improperly in the environment. Nonetheless, greenhouse gas emissions caused by inappropriate disposal or recycling and by the many production stages have not been discussed thoroughly. Regarding the manufacturing processes, carbon dioxide is produced mainly through heating of process streams and intrinsic chemical transformations, explaining why first-generation petrochemical industries are among the top five most greenhouse gas (GHG)-polluting businesses. Consequently, the plastics market must pursue full integration with the circular economy approach, promoting the simultaneous recycling of plastic wastes and sequestration and reuse of CO2 through carbon capture and utilization (CCU) strategies, which can be employed for the manufacture of olefins (among other process streams) and reduction of fossil-fuel demands and environmental impacts. Considering the previous remarks, the present manuscript’s purpose is to provide a review regarding CO2 emissions, capture, and utilization in the plastics industry. A detailed bibliometric review of both the scientific and the patent literature available is presented, including the description of key players and critical discussions and suggestions about the main technologies. As shown throughout the text, the number of documents has grown steadily, illustrating the increasing importance of CCU strategies in the field of plastics manufacture.
Collapse
|