1
|
Irshad MA, Abdullah, Latif M, Nasim I, Nawaz R, Zahoor AF, Al-Mutairi AA, Al-Hussain SA, Irfan A, Zaki MEA. Efficient chromium removal from leather industrial wastewater in batch experimental study: Green synthesis and characterization of zinc oxide nanoparticles using Ficus benghalensis extracts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116616. [PMID: 38917589 DOI: 10.1016/j.ecoenv.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The urgent need to address the severe environmental risk posed by chromium-contaminated industrial wastewater necessitates the development of eco-friendly cleanup methodologies. Utilizing the Ficus benghalensis plant extracts, the present study aims to develop green zinc oxide nanoparticles for the removal of Cr metal ions from wastewater. The leaves of Ficus benghalensis, often known as the banyan tree, were used to extract a solution for synthesizing ZnO NPs. These nanoparticles were developed with the goal of efficiently eliminating chromium (Cr) from industrial effluents. Batch studies were carried out to assess the efficiency of these synthesized ZnO NPs in treating leather industrial effluent, with aiming for optimal chromium removal. This involved measuring the nanoparticles' capacity to adsorb Cr ions from wastewater samples by comparing chromium levels before and after treatment. Removal efficiency for Cr was estimated through the batches such as optimization of pH, contact time, initial Cr concentration and sorbent dose of ZnO NPs were of the batches. These synthesized ZnO NPs were found to be successful in lowering chromium levels in wastewater to meet permissible limit. The nanoparticles exhibited their highest absorption capacity, reaching 94 % (46 mg/g) at pH 4, with a contact time of 7 hours with the optimum sorbent dose of 0.6 g/L. Hence, the excellent adsorption capabilities of these nanoparticles, together with their environmentally benign manufacturing technique, provide a long-term and efficient solution for chromium-contaminated wastewater treatment. Its novel nature has the potential to significantly improve the safety and cleanliness of water ecosystems, protecting the both i.e. human health and the environment.
Collapse
Affiliation(s)
- Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, 54000, Pakistan.
| | - Abdullah
- Department of Environmental Sciences, The University of Lahore, 54000, Pakistan.
| | - Maria Latif
- Department of Environmental Sciences, The University of Lahore, 54000, Pakistan.
| | - Iqra Nasim
- Department of Environmental Sciences, The University of Lahore, 54000, Pakistan.
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, 54000, Pakistan; Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, Negeri Sembilan 71800, Malaysia.
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
2
|
Zainab N, Glick BR, Bose A, Amna, Ali J, Rehman FU, Paker NP, Rengasamy K, Kamran MA, Hayat K, Munis MFH, Sultan T, Imran M, Chaudhary HJ. Deciphering the mechanistic role of Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) in bio-sorption and phyto-assimilation of Cadmium via Linum usitatissimum L. Seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108652. [PMID: 38723488 DOI: 10.1016/j.plaphy.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bernard R Glick
- Department of Biology, University of Water Loo, Ontario, Canada
| | - Arpita Bose
- Department of Biology Washington University in St. Louis (WUSTL), United States
| | - Amna
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Botany, Rawalpindi Women University, 6th Road Sattellite Town, Rawalpindi, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, Tasmania, Australia
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Muhammad Aqeel Kamran
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou China, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
3
|
Ghandali MV, Safarzadeh S, Ghasemi-Fasaei R, Zeinali S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO 2 nanoparticle-modified biochar. Sci Rep 2024; 14:10684. [PMID: 38724636 PMCID: PMC11082237 DOI: 10.1038/s41598-024-61270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.
Collapse
Affiliation(s)
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
4
|
Alhajeri NS, Tawfik A, Nasr M, Osman AI. Artificial intelligence-enabled optimization of Fe/Zn@biochar photocatalyst for 2,6-dichlorophenol removal from petrochemical wastewater: A techno-economic perspective. CHEMOSPHERE 2024; 352:141476. [PMID: 38382716 DOI: 10.1016/j.chemosphere.2024.141476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
While numerous studies have addressed the photocatalytic degradation of 2,6-dichlorophenol (2,6-DCP) in wastewater, an existing research gap pertains to operational factors' optimization by non-linear prediction models to ensure a cost-effective and sustainable process. Herein, we focus on optimizing the photocatalytic degradation of 2,6-DCP using artificial intelligence modeling, aiming at minimizing initial capital outlay and ongoing operational expenses. Hence, Fe/Zn@biochar, a novel material, was synthesized, characterized, and applied to harness the dual capabilities of 2,6-DCP adsorption and degradation. Fe/Zn@biochar exhibited an adsorption energy of -21.858 kJ/mol, effectively capturing the 2,6-DCP molecules. This catalyst accumulated photo-excited electrons, which, upon interaction with adsorbed oxygen and/or dissolved oxygen generated •O2-. The •OH radicals could also be produced from h+ in the Fe/Zn@biochar valence band, cleaving the C-Cl bonds to Cl- ions, dechlorinated byproducts, and phenols. An artificial neural network (ANN) model, with a 4-10-1 topology, "trainlm" training function, and feed-forward back-propagation algorithm, was developed to predict the 2,6-DCP removal efficiency. The ANN prediction accuracy was expressed as R2 = 0.967 and mean squared error = 5.56e-22. The ANN-based optimized condition depicted that over 90% of 2,6-DCP could be eliminated under C0 = 130 mg/L, pH = 2.74, and catalyst dosage = 168 mg/L within ∼4 h. This optimum condition corresponded to a total cost of $7.70/m3, which was cheaper than the price estimated from the unoptimized photocatalytic system by 16%. Hence, the proposed ANN could be employed to enhance the 2,6-DCP photocatalytic degradation process with reduced operational expenses, providing practical and cost-effective solutions for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Nawaf S Alhajeri
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, United Kingdom.
| |
Collapse
|
5
|
Tariq MS, Imran M, Ud Din S, Murtaza B, Naeem MA, Amjad M, Shah NS, Khalid MS, Abdel-Maksoud MA, Alfuraydi AA, AbdElgawad H. Magnetic nanocomposite of maize offal biomass for effective sequestration of Congo red and methyl orange dyes from contaminated water: modeling, kinetics and reusability. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:975-992. [PMID: 37968930 DOI: 10.1080/15226514.2023.2280047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The current study aims to use a facile and novel method to remove Congo red (CR) and Methyl Orange (MO) dyes from contaminated water with Maize offal biomass (MOB) and its nanocomposite with magnetic nanoparticles (MOB/MNPs). The MOB and MOB/MNPs were characterized with Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), BET, XRD and point of zero charge (pHPZC). The influence of initial CR and MO levels (20-320 mg/L), adsorbent dosage (1-3 g/L), pH (3-9), co-exiting ions, temperature (25-45 °C) and time (15-180 min) was estimated. The findings demonstrated that MOB/MNPs exhibited excellent adsorption of 114.75 and 29.0 mg/g for CR and MO dyes, respectively while MOB exhibited 81.35 and 23.02 mg/g adsorption for CR and MO dyes, respectively at optimum pH-5, and dose 2 g/L. Initially, there was rapid dye removal which slowed down until equilibrium was reached. The interfering/competing ions in contaminated water and elevated temperature favored the dyes sequestration. The MOB/MNPs exhibited tremendous reusability and stability. The dyes adsorption was spontaneous, and exothermic with enhanced randomness. The adsorption effects were well explained with Freundlich model, pseudo second order and Elovich models. It is concluded that MOB/MNPs showed excellent, eco-friendly, and cost-effective potential to decontaminate the water.
Collapse
Affiliation(s)
- Muhammad Salman Tariq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Salah Ud Din
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Li C, Liu J, Wei Z, Cheng Y, Shen Z, Xin Z, Huang Y, Wang H, Li Y, Mu Z, Zhang Q. Exogenous melatonin enhances the tolerance of tiger nut (Cyperus esculentus L.) via DNA damage repair pathway under heavy metal stress (Cd 2+) at the sprout stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115519. [PMID: 37769580 DOI: 10.1016/j.ecoenv.2023.115519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Heavy metal (HM) stress is a non-negligible abiotic stress that seriously restricts crop yield and quality, while the sprout stage is the most sensitive to stress and directly impacts the growth and development of the later stage. Melatonin (N-acetyl-5-methoxytryptamine), as an exogenous additive, enhances stress resistance due to its ability to oxidize and reduce. However, few reports on exogenous melatonin to tiger nuts under HM stress have explored whether exogenous melatonin enhances plants' resistance to heavy metals. Here, "Jisha 2″ was used as material, with a stress concentration of 5 mg/L and 100 μmol/L of CdCl2 to explore whether exogenous melatonin enhances plant resistance and molecular mechanism. The result revealed that stress limits growth, while melatonin alleviated the sprout damage under stress from the phenotypes. Moreover, stress-enhanced reactive oxygen species (ROS) accumulation and membrane lipid peroxidation, while melatonin-increased ROS reduce damage via the analysis of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and malondialdehyde (MDA) content, hydrogen peroxide (H2O2), superoxide anion (O2-), and Electrolyte leakage (El). Further results indicated that HM leads to DNA damage while exogenous melatonin will repair the damage by analyzing random amplified polymorphic DNA (RAPD), DNA cross-linking, 8-hydroxy-20-deoxyguanine level, and relative density of apurinic sites. Furthermore, gene expression in the DNA-repaired pathway exhibited similar results. These results applied that exogenous melatonin released the hurt caused by HM stress, with DNA repair and ROS balance serving as candidate pathways. This study elucidated the mechanism of melatonin's influence and provided theoretical insights into its application in tiger nuts.
Collapse
Affiliation(s)
- Caihua Li
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jiayao Liu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zunmiao Wei
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yan Cheng
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zihao Shen
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuo Xin
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudi Huang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongda Wang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuhuan Li
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhongsheng Mu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China; Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Qi Zhang
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China; Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
7
|
Ahmad S, Imran M, Amin M, Al-Kahtani AA, Arshad M, Nawaz R, Shah NS, Schotting RJ. Potential of magnetic quinoa biosorbent composite and HNO 3 treated biosorbent for effective sequestration of chromium (VI) from contaminated water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:929-939. [PMID: 36121769 DOI: 10.1080/15226514.2022.2122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The present study aims to prepare novel quinoa biosorbent (QB), acid activated QB (QB/Acid) and its nanocomposite with magnetic nanoparticles (QB/MNPs) for batch scale Cr removal from contaminated water. The Cr adsorption was systematically studied at different pH (2-9), adsorbent dosage (1-3 g/L), initial concentration (25-200 mg/L), contact time (180 min) and competing ions in water. Maximum Cr adsorption was observed onto QB/MNPs (57.4 mg/L), followed by QB/Acid (46.35 mg/g) and QB (39.9 mg/g). The Cr removal by QB/MNPs was higher than QB/Acid and QB. Results revealed that the highest Cr removal was obtained at optimum pH 4, 25 mg/L, and 2 g/L dosage. The FTIR spectra displayed various functional groups on adsorbents surface serving as a potential scaffold to remove Cr from contaminated water. The equilibrium and kinetic Cr adsorption data best fitted with Freundlich and pseudo-second order models, respectively (R2 ≥ 0.96). The QB/MNPs showed excellent reusability in five adsorption/desorption cycles (4.7% decline) with minor leaching of Fe (below threshold level). The coexisting ions in groundwater showed an inhibitory effect on Cr sequestration (5%) from water. The comparison of Cr adsorption by QB/MNPs and QB/Acid showed better potential for Cr sequestration than various previously explored adsorbents in the literature.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Maryam Amin
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Arshad
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, University of Lahore, Lahore, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ruud J Schotting
- Environmental Hydrogeology Research Group, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Zhao X, Feng H, Jia P, An Q, Ma M. Removal of Cr(VI) from aqueous solution by a novel ZnO-sludge biochar composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83045-83059. [PMID: 35754078 DOI: 10.1007/s11356-022-21616-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The incorporation of ZnO into biochar has become a promising way to obtain adsorbents with enhanced adsorption capacity. In this study, a low-cost ZnO-sludge biochar composite (ZBC) was prepared by a simply in situ method using sewage sludge biochar (SBC) and zinc acetate, as well as employed for Cr(VI) adsorption in water. The results of XPS and FT-IR suggested that the ZBC surface had more functional groups such as -COOH, -OH, -C-O, ZnO, etc. Compared with SBC, the BET-specific surface area of the ZBC increased from 8.82 to 41.24 m2·g-1, which provides potential advantages for Cr(VI) uptake. Benefiting from ZnO incorporation, about an 18% increase in Cr(VI) removal efficiency was obtained. The maximum removal efficiency and equilibrium adsorption amount of ZBC for Cr(VI) reached 98.4% and 33.87 mg·g-1, respectively. The adsorption was spontaneous and endothermic nature, and coincided nicely with pseudo-second-order kinetics and Langmuir isotherm. The analyses indicated that Cr(VI) removal by ZBC was predominantly via electrostatic attraction, surface complexation, ion exchange, and reduction. This study provided valuable insights into the problem of sludge disposal and provided a new and effective method for Cr(VI) removal.
Collapse
Affiliation(s)
- Xia Zhao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Hao Feng
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Pengju Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Qiufeng An
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Minghua Ma
- Xi'an No.5 Reclaimed Water Plant, Xi'an, 710000, China
| |
Collapse
|
9
|
Vishali S, Mullai P, Mahboob S, Al-Ghanim K, Sivasankar A. Elucidation the influence of design variables on coagulation-flocculation mechanisms in the lab-scale bio-coagulation on toxic industrial effluent treatment. ENVIRONMENTAL RESEARCH 2022; 212:113224. [PMID: 35405132 DOI: 10.1016/j.envres.2022.113224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Bio-coagulants are environmentally friendly substances that have shown potential in removing organic and inorganic contaminants from wastewater from the Imitation Paint Industry. Under the optimized conditions, the use of the three bio-coagulants (of plant origin), Strychnos potatorum, Cactus opuntia and Portunus sanguinolentus (crab) shell (of animal origin) were evaluated, and their removal mechanism was based on kinetic models and adsorption isotherms. The error analysis method was used to find the best isotherm fit. In addition, the kinetic model parameters showed the absence of chemisorption and confirmed the existence of pore diffusion. The interaction between coagulant and pollutant, the type, homogeneity and intensity of the coagulation process, the pollutant absorption capacity of the coagulant were evaluated with the aid of the adsorption isotherm models. From the Pseudo first-order kinetic model an equilibrium pollutant uptake (mg/g) was marked as 598, 554 and 597 for Strychnos potatorum, Cactus opuntia and Portunus sanguinolentus respectively. The better affinity between the pollutants and the bio coagulants were observed through the lower values of Langmuir isotherm constant kL. The adsorption intensity from Freundlich model (nF) were ranged between 1 and 10 for all the listed coagulants, which revealed the physisorption behavior and heterogeneous mechanism of removal. With these results, it would be possible to conduct scale-up studies to adopt the process for practical systems.
Collapse
Affiliation(s)
- S Vishali
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India.
| | - P Mullai
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608 002, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - K Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Annamalai Sivasankar
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
10
|
Sinha R, Kumar R, Sharma P, Kant N, Shang J, Aminabhavi TM. Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115356. [PMID: 35623129 DOI: 10.1016/j.jenvman.2022.115356] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Chromium originates from geogenic and extensive anthropogenic activities and significantly impacts natural ecosystems and human health. Various methods have been applied to remove hexavalent chromium (Cr(VI)) from aquatic environmental matrices, including adsorption via different adsorbents, which is considered to be the most common and low-cost approach. Biochar materials have been recognized as renewable carbon sorbents, pyrolyzed from various biomass at different temperatures under limited/no oxygen conditions for heavy metals remediation. This review summarizes the sources, chemical speciation & toxicity of Cr(VI) ions, and raw and modified biochar applications for Cr(VI) remediation from various contaminated matrices. Mechanistic understanding of Cr(VI) adsorption using different biochar-based materials through batch and saturated column adsorption experiments is documented. Electrostatic interaction and ion exchange dominate the Cr(VI) adsorption onto the biochar materials in acidic pH media. Cr(VI) ions tend to break down as HCrO4-, CrO42-, and Cr2O72- ions in aqueous solutions. At low pH (∼1-4), the availability of HCrO4- ions attributes the electrostatic forces of attraction due to the available functional groups such as -NH4+, -COOH, and -OH2+, which encourages higher adsorption of Cr(VI). Equilibrium isotherm, kinetic, and thermodynamic models help to understand Cr(VI)-biochar interactions and their adsorption mechanism. The adsorption studies of Cr(VI) are summarized through the fixed-bed saturated column experiments and Cr-contaminated real groundwater analysis using biochar-based sorbents for practical applicability. This review highlights the significant challenges in biochar-based material applications as green, renewable, and cost-effective adsorbents for the remediation of Cr(VI). Further recommendations and future scope for the implications of advanced novel biochar materials for Cr(VI) removal and other heavy metals are elegantly discussed.
Collapse
Affiliation(s)
- Rama Sinha
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India.
| | - Nishi Kant
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, Jharkhand, India
| | - Jianying Shang
- Department of Soil and Water Science, China Agricultural University, Beijing, 100083, China
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; School of Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248 007, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
11
|
Oraon A, Ram M, Kumar Gupta A, Dutta S, Kumar Saxena V, Kumar Gaurav G. An efficient waste garlic skins biochar nanocomposite: An advanced cleaner approach for secondary waste utilisation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Fito J, Kefeni KK, Nkambule TTI. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154648. [PMID: 35306069 DOI: 10.1016/j.scitotenv.2022.154648] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Biochar (BC)-photocatalyst nanocomposites have emerged as appealing water and wastewater treatment technology. Such nanocomposite materials benefit from the synergistic effect of adsorption and photocatalysis to attain improved removal of pollutants from water and wastewater. Under this review, three BC-based nanocomposite photocatalysts such as BC-TiO2, BC-ZnO, and BC-spinel ferrites were considered. These nanocomposites acquire intrinsic properties to improve the practical limitations of the pristine BC and photocatalysts. The BC-based nanocomposites attained high photocatalytic activity, mechanical hardness, thermal stability, chemically non-reactive, magnetically permeable, reduced energy band gaps, improved reusability, and simplified recovery. Moreover, BC-based photocatalytic nanocomposites showed reduced recombination rates of the electron-hole pairs which are desirable for photocatalytic applications. However, the surface areas of the composites are usually smaller than that of the BC but higher than those of the pristine photocatalysts. Practically, the performances of the nanocomposites are much superior to those of the corresponding pristine components. This hybrid treatment technology is an emerging field and its industrial application is still at an early stage of the investigation. Therefore, exploring the full potential and practical applications of this technology is highly encouraging. Hence, this review focused on the critical evaluation of the most recent research on the synthesis, characterization, and photocatalytic treatment efficiency of the BC photocatalyst nanocomposites towards emerging pollutants in the aqueous medium. Moreover, the influence of various sources of BC feedstocks and their limitations on adsorption and photodegradation activities are discussed in detail. Finally, concluding remarks and future research directions are given to assist and shape the exploration of BC-based nanocomposite photocatalysts in water treatment.
Collapse
Affiliation(s)
- Jemal Fito
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Kebede K Kefeni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| |
Collapse
|
13
|
Kumar Prajapati A, Kumar Mondal M. Green synthesis of Fe3O4-onion peel biochar nanocomposites for adsorption of Cr(VI), methylene blue and congo red dye from aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118161] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Mustafa Shah G, Imran M, Aiman U, Mohsin Iqbal M, Akram M, Javeed HMR, Waqar A, Rabbani F. Efficient sequestration of lead from aqueous systems by peanut shells and compost: evidence from fixed bed column and batch scale studies. PEERJ PHYSICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-pchem.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lead (Pb) is a pervasive contaminant and poses a serious threat to living beings. The present study aims at batch and fixed bed column scale potential of commercial compost (CCB) and peanut shells biosorbents (PSB) for the sequestration of Pb from contaminated aqueous systems. The PSB and CCB were characterized with FTIR, SEM and Brunauer Emmett-Teller (BET) to get insight of the adsorption behavior of both materials. Fixed bed column scale experiments were performed at steady state flow (2.5 and 5.0 mL/min), initial Pb concentrations (25 and 50 mg/L) and dosage of each adsorbent (3.0 and 6.0 g/column). Columns packed (15.9 cm2) with PSB and CCB have revealed excellent adsorption of Pb with PSB as compared with CCB. The total volume of injected contaminated water was 1,500 mL and 3,000 mL at 2.5 and 5.0 mL/min, respectively while total bed volume number was 157. A series of batch experiments with CCB and PSB was conducted at adsorbent dosage (1.25–5.0 g/L), initial Pb level (25–100 mg/L), interaction time (0–180 min) and solution pH (4–10) at room temperature. Batch scale results revealed that PSB removed 92% Pb from water at 25 mg Pb/L concentration as compared with CCB (79%). The presence of competing ions in groundwater showed less Pb removal as compared with synthetic water. The experimental data were simulated with equilibrium isothermal models: Langmuir, Freundlich, and kinetic models: pseudo first order, pseudo second order and intra-particle diffusion. The Freundlich and pseudo second order models better described the equilibrium and kinetic experimental data, respectively with maximum sorption of 42.5 mg/g by PSB which is also evident from FTIR functional groups and SEM results. While equilibrium sorption of Pb onto CCB was equally explained by Freundlich and Langmuir models. These findings indicate that PSB could be an active and ecofriendly biosorbent for the sequestration of metals from contaminated aqueous systems.
Collapse
|
15
|
Thangagiri B, Sakthivel A, Jeyasubramanian K, Seenivasan S, Dhaveethu Raja J, Yun K. Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: Batch and column studies. CHEMOSPHERE 2022; 286:131598. [PMID: 34325269 DOI: 10.1016/j.chemosphere.2021.131598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
This report details the preparation, characterization, and applications of an inexpensive adsorbent obtained from Azadirachta indica leaves (Neem biochar (NBC)) and used to remove Cr(VI) from the synthetic waste water. The obtained NBC was characterized by XRD, FTIR, FESEM, EDX and Zeta potential measurements. Adsorption experiments conducted at various pH levels confirmed that 58.54 mg g-1 of Cr(VI) was removed by NBC at pH 2. Experiments conducted at various temperatures revealed that the Cr(VI) adsorption on NBC fits the Langmuir-type adsorption isotherm. A fixed-bed column study was conducted to obtain breakthrough curve for the adsorption process, which confirmed that the NBC usage rate was 4.63 g/L. Cr(VI)NBC was reactivated by NaOH treatment, and the reactivated NBC was used as a sorbent to remove fresh Cr(VI) from the synthetic waste water repeatedly. A cost analysis was also performed for the Cr(VI) removal confirmed that the process was less expensive.
Collapse
Affiliation(s)
- B Thangagiri
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - A Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India.
| | - K Jeyasubramanian
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - S Seenivasan
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409-1163, USA
| | - J Dhaveethu Raja
- Department of Chemistry, The American College, Madurai, 625 005, India
| | - Kyusik Yun
- Department of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
16
|
Highly efficient removal of U(VI) in aqueous solutions by tea waste-derived biochar-supported iron-manganese oxide composite. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|