1
|
Shankar VS, De K, Mandal S, Jacob S, Satyakeerthy TR. Assessment of transboundary macro-litter on the remote island of Andaman and Nicobar: Unveiling the governing factors and risk assessment. MARINE POLLUTION BULLETIN 2024; 209:117145. [PMID: 39461182 DOI: 10.1016/j.marpolbul.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
The increasing occurrence of mismanaged plastic litter along India's coastline and the ominous challenges it poses to biodiversity and ecosystem health is a growing environmental concern. To address this issue, we comprehensively investigated the abundance, composition, and probable sources of marine litter on North Cinque Island, a remote uninhabited island in the Andaman and Nicobar archipelago, Bay of Bengal. This island is a designated wildlife sanctuary and serves as an important nesting site for Green, Hawksbill and Leatherback turtles. A total of 6227 litter items were enumerated, with an average concentration of 0.12 items/m2, representing 20 diverse litter types, with plastic dominating the litter composition (86 %). The cleanliness and environmental hazards of the coast due to the litter were assessed using different indices such as the Clean Coast Index (CCI), Plastic Accumulation Index (PAI), Hazardous Item Index (HII), and Clean Environment Index (CEI). CCI indicates the moderately clean-to-clean status of the surveyed sites. PAI points to low to moderate accumulation of plastic litter. HII of all five coasts fell in category II, suggesting a moderate abundance of hazardous items that can inflict injuries to the foraging turtle and their hatchlings. The CEI articulates the moderately clean to very clean status of the sites. Litter brand audit suggests a considerable amount of stranded litter on the coasts was transboundary and originated from six Indian Ocean Rim Countries (IORC), namely Thailand, Myanmar, Malaysia, Indonesia, Sri Lanka, and UAE. Joint solid waste management by the IORC is the need of the hour to avert litter accumulation on the pristine, remote islands.
Collapse
Affiliation(s)
- Venkatesan Shiva Shankar
- Faculty of Environmental Science, Mahatma Gandhi Government College, Middle & North Andaman, Andaman and Nicobar Islands 744204, India.
| | - Kalyan De
- Biological Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - Sourav Mandal
- Ocean Engineering Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Sunil Jacob
- IGNOU Regional Centre, Port Blair, Andaman and Nicobar Islands 744 103, India
| | | |
Collapse
|
2
|
Chahouri A, Lamine I, Ouchene H, Yacoubi B, Moukrim A, Banaoui A. Assessment of heavy metal contamination and ecological risk in Morocco's marine and estuarine ecosystems through a combined analysis of surface sediment and bioindicator species: Donax trunculus and Scrobicularia plana. MARINE POLLUTION BULLETIN 2023; 192:115076. [PMID: 37267871 DOI: 10.1016/j.marpolbul.2023.115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Morocco is one of the most affected regions by heavy metal pollution worldwide. In this study, two ecosystems in Agadir Bay, southern Morocco, were studied seasonally, using surface sediment and bivalve species. The concentrations of Cu, Pb and Cd were determined using the Shimadzu AAS 7000 flame atomic absorption spectrophotometer method. Our results marked average levels corresponding to an unpolluted sediment with a low contamination degree, low ecological risk associated with metal contamination, and levels that did not exceed the thresholds set by EC, USEPA, INERIS and INRH, except for Pb in tourist beach. The principal component analysis findings revealed a positive correlation in the bioaccumulation between the two compartments, with an influence of abiotic parameters. Thus, to better manage environmental pollution in these ecosystems, authorities must implement waste treatment strategies in the surrounding harbor and tourist complexes and prohibit the use of these toxic metals in the coastal areas.
Collapse
Affiliation(s)
- Abir Chahouri
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco.
| | - Imane Lamine
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Hanan Ouchene
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Bouchra Yacoubi
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | | | - Ali Banaoui
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
3
|
de Luna Beraldo M, Lozano-Bilbao E, Hardisson A, Paz S, Weller DG, Rubio C, Gutiérrez ÁJ. Trace and macro elements concentrations in the blood and muscle of loggerhead turtles (Caretta caretta) from the Canary Islands, Spain. MARINE POLLUTION BULLETIN 2023; 190:114793. [PMID: 36934490 DOI: 10.1016/j.marpolbul.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Sea turtles can bioaccumulate heavy metals and trace elements over the years, therefore they can be used as bioindicators of pollution in the marine environment. The aim of this study was to analyze seventeen elements in blood and muscle of Caretta caretta from the Canary Islands and compare these concentrations in the two tissues. Thirteen blood samples and six muscle samples were collected from loggerhead turtles admitted to the Rescue Center of La Tahonilla. The samples were processed through microwave digestion and incineration. For the study of the data, a descriptive statistical analysis and a PERMANOVA were performed. All individuals in this study were juveniles (size <70 cm). The results of this study differ from previous studies on loggerhead sea turtles. All the elements analyzed were detected, with Na having the highest concentration in blood (75,379 ± 30,066 mg/kg) and muscle (222,626 ± 156,049 mg/kg). Statistically significant differences were found between the concentration of Al, B, Ba, Ca, Fe, K, Na, Sr, V and Zn in each tissue analyzed. Compared to other studies, a higher Cu concentration was found both in blood (252.9 ± 114.4 mg/kg) and in muscle (416 ± 247.8 mg/kg). This study has provided new data on pollutants in loggerhead sea turtles and increased the information available for different geographic areas, although more studies are needed to understand the effects and impact of these pollutants on sea turtles.
Collapse
Affiliation(s)
- Monica de Luna Beraldo
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071 San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Enrique Lozano-Bilbao
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071 San Cristóbal de La Laguna, Tenerife, Spain; Ecología Marina Aplicada y Pesquerías, i-UNAT, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain.
| | - Arturo Hardisson
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071 San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071 San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Dailos González Weller
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071 San Cristóbal de La Laguna, Tenerife, Spain; Servicio Público Canario de Salud, Laboratorio Central, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071 San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071 San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
4
|
Trace Elements and Persistent Organic Pollutants in Unhatched Loggerhead Turtle Eggs from an Emerging Nesting Site along the Southwestern Coasts of Italy, Western Mediterranean Sea. Animals (Basel) 2023; 13:ani13061075. [PMID: 36978615 PMCID: PMC10044507 DOI: 10.3390/ani13061075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Marine pollution is one of the major threats affecting loggerhead turtles, which due to their long life span, highly migratory behavior, and carnivorous diet, may be exposed to elevated levels of toxic elements throughout their life. The transfer of chemicals from mothers to their offspring is of particular conservation concern because it may affect embryonic development and hatching success. In this study, the concentrations of 16 toxic and potentially toxic trace elements, 6 indicator polychlorinated biphenyls (PCBs), and organochlorine pesticide residues (OCPs) were determined in 138 eggs from 46 loggerhead turtle nests laid during the 2021 nesting season in Campania, Italy, western Mediterranean Sea. The possible impact of pollutant levels on hatching success and early embryonic death was also investigated. Trace element analysis was performed using an ICP-MS, except for mercury, which was determined using a Direct Mercury Analyzer® (DMA). PCBs and OCPs were analyzed with high-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC-HRMS) and gas chromatography tandem quadrupole mass spectrometry GC-MS /MS, respectively. The concentrations of essential elements in the eggs were higher than those of non-essential elements. In addition, the highly chlorinated PCBs (153, 138, and 180) contributed the most to the total PCBs, while OCPs were not detected. No correlations were found between contaminant concentrations and reproductive parameters (hatching success and no obvious embryos). The results obtained suggest that the levels of contaminants found in the eggs do not affect the reproductive success of the species in the study area.
Collapse
|
5
|
Solomando A, Pujol F, Sureda A, Pinya S. Ingestion and characterization of plastic debris by loggerhead sea turtle, Caretta caretta, in the Balearic Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154159. [PMID: 35231507 DOI: 10.1016/j.scitotenv.2022.154159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Plastic waste has become ubiquitous pollutants in seas and oceans and can affect a wide range of species. For some marine species, plastic debris could pose a considerable threat through entanglement, ingestion, and habitat degradation and loss. Sea turtles are one of the most sensitive species, as their migratory behaviour and multifaceted life cycles make these reptiles especially vulnerable to the negative effects of plastic debris. The present study aimed to assess the amount and composition of plastic debris ingested by loggerhead turtles (Caretta caretta, Linnaeus, 1758) in the Balearic Islands Sea, thusly providing new information to complete the knowledge for this topic. In this work, 45 stranded dead C. caretta specimens were necropsied, and their digestive tract content analysed for the presence of plastic debris. Plastic objects were observed in 27 individuals (60.0%), with an average of 12.7 ± 4.7 plastic items per turtle. Litter in the faecal pellet was also monitored in 67 living individuals, observing plastic elements in 46 (68.7%) of the specimens, reporting an average of 9.7 ± 3.3 plastic elements per individual. Overall, 785 plastic items were found, measured, weighed and categorized according to size, colour, shape, and type of polymer. The main elements ingested were plastic sheets that were found in 65.3% of the turtles analysed, being white (42.7%) and transparent (29.2%) the most predominant colours. Most elements were macroplastics (59.3%), while microplastics were not found. Fourier Transform Infrared Spectrometry (FT-IR) analysis showed that high-density polyethylene and polypropylene were the main polymer plastics, representing 42.3% and 33.8% of the total, respectively. In conclusion, the high occurrence of plastic debris determined in the present study evidenced for the first time plastic ingestion in loggerhead turtles in the Balearic Islands, and highlights C. caretta as a bioindicator organism for marine pollution.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain.
| | - Francisca Pujol
- Palma Aquarium Foundation, Carrer Manuela de los Herreros i Sorà 21, 07610 Palma de Mallorca, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain.
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain.
| |
Collapse
|
6
|
Canzanella S, Danese A, Mandato M, Lucifora G, Riverso C, Federico G, Gallo P, Esposito M. Concentrations of trace elements in tissues of loggerhead turtles (Caretta caretta) from the Tyrrhenian and the Ionian coastlines (Calabria, Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26545-26557. [PMID: 33484457 DOI: 10.1007/s11356-021-12499-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Toxic trace elements from both, natural and anthropogenic origin, pose a threat to aquatic environments and marine wildlife due to their long-range transport, bioaccumulative nature, and biomagnification through the food chain. Being long-lived and migratory animals, sea turtles can be exposed to elevated levels of toxic elements, and are therefore considered sentinel species for chemical pollution. In this study, concentrations of trace elements (arsenic, cadmium, lead, mercury) were determined in tissues of 46 loggerhead sea turtles (Caretta caretta) stranded along Tyrrhenian and Ionian coasts of Calabria, in Southern Italy, between 2014 and 2020. Curved carapace length (CCL), curved carapace width (CCW), body mass (BM), and sex were determined and the correlations of these parameters with toxic elements concentrations were investigated. During necropsy, kidney, liver, and muscle tissues were collected and the concentration and distribution of metals determined. Muscle tissues showed the lowest toxic element burdens, except for As that showed the highest mean concentrations in this tissue. The kidney was the main accumulation organ for Cd, while similar levels of Hg and Pb were measured in kidney, liver, and muscle tissues. The risk assessment performed for Cd, Hg, and Pb in sea turtles' liver highlighted possible negative effects on sea turtles' health and the need for marine turtle toxicology researches. This is the first study reporting levels and distribution of toxic elements in tissues of Caretta caretta turtles from the Tyrrhenian and Ionian coasts of Calabria.
Collapse
Affiliation(s)
- Silvia Canzanella
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy.
| | - Amalia Danese
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Maria Mandato
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Caterina Riverso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Giovanni Federico
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| |
Collapse
|
7
|
Pinya S, Renga E, Fernández G, Mateu-Vicens G, Tejada S, Capó X, Sureda A. Physiological biomarkers in loggerhead turtles (Caretta caretta) as a tool for monitoring sanitary evolution in marine recovery centres. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143930. [PMID: 33316519 DOI: 10.1016/j.scitotenv.2020.143930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The loggerhead turtle, Caretta caretta, is a very vulnerable species to human action which means that numerous specimens arrive at the recovery centres to be treated until they can be returned to the natural environment. The aim of the present study was to investigate the physiological evolution of C. caretta specimens that have entered a recovery centre by using oxidative stress biomarkers. Plasma and peripheral blood mononuclear cells of specimens were obtained at different periods: the day of arrival at the recovery centre (day 1), at 3, 9, and 30 days later, and a final sample collected before the animal was returned to the sea. The average residence time in the centre until the return to the sea was 58.5 ± 6.1 days. The activities of antioxidant enzymes - catalase (CAT), superoxide dismutase (SOD), glutathione reductase, and glutathione peroxidase activities in immune cells and CAT and SOD in plasma - progressively decreased throughout the recovery time. Similarly, H2O2 production by immune cells after lipopolysaccharide (LPS) and zymosan activation progressively decreased with the recovery process. Also, malondialdehyde (MDA), as a marker of lipid peroxidation, and the activity of the pro-oxidant myeloperoxidase were significantly decreased throughout the recovery process. In conclusion, the results evidenced that the turtles presented a high level of oxidative stress upon arrival at the recovery centre, which was normalized along with their rehabilitation. Oxidative stress biomarkers are a good tool to monitor the recovery process in C. caretta complementary to the veterinary control.
Collapse
Affiliation(s)
- Samuel Pinya
- Interdisciplinary Ecology Group, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain; Natural Sciences Museum of the Balearic Islands, Sóller, Balearic Islands, Spain
| | - Emanuela Renga
- Palma Aquarium Foundation, Recovery Centre for Marine Species, Palma de Mallorca, Balearic Islands, Spain
| | - Gloria Fernández
- Palma Aquarium Foundation, Recovery Centre for Marine Species, Palma de Mallorca, Balearic Islands, Spain
| | - Guillem Mateu-Vicens
- Interdisciplinary Ecology Group, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain; Natural Sciences Museum of the Balearic Islands, Sóller, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department and Health Research Institute of Balearic Islands (IdisBa), University of the Balearic Islands, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdisBa), University of Balearic Islands, Palma de Mallorca, Spain; Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma de Mallorca, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdisBa), University of Balearic Islands, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|