1
|
Wu S. Preparation of attapulgite nanoparticles modified polypropylene adsorption membrane and its application in small molecular pollutant adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124338. [PMID: 39418696 DOI: 10.1016/j.jchromb.2024.124338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In this study, a novel surface covalent reaction method was used to modify attapulgite nanoparticles on the surface of polypropylene adsorption membrane to adsorb various small molecular pollutants for the first time. The surface covalent reaction method has the advantage of step control. Therefore, the uniformity and stability of attapulgite nanoparticles can be ensured, and then could effectively improve the adsorption performance of polypropylene adsorption membrane. On the other hand, compared with various materials modified on the surface of polypropylene adsorption membrane currently, attapulgite nanoparticles has the characteristics of low cost and environmental friendliness, which is more conducive to the large-scale practical application. The polypropylene adsorption membrane modified with attapulgite nanoparticles was characterized by field emission scanning electron microscopy, fourier transform infrared spectrometer and X-ray diffractograph, and it was confirmed that the attapulgite nanoparticles was successfully modified on the surface of the polypropylene adsorption membrane. The experimental results showed that the adsorption capacities of polypropylene adsorption membrane modified with attapulgite nanoparticles could reach 11.53 mg/g, 8.7 mg/g and 5.78 mg/g for cyromazine, malachite green and dagenan respectively within 10 s. In the case of the above three analytes, the minimum detected concentration could reach 0.02 mg/mL, and the relative standard deviation was about 10 %. At the same time, the adsorption performance of polypropylene adsorption membrane modified with attapulgite nanoparticles did not decrease significantly after 50 cycles. A standard recovery of 76.8 % - 89.5 % and a relative standard deviation of 7.2 % - 15.2 % were obtained by using the polypropylene adsorption membrane modified with attapulgite nanoparticles to adsorb cyromazine in cucumber skin samples, indicating that the polypropylene adsorption membrane modified with attapulgite nanoparticles has the ability to treat complex samples.
Collapse
Affiliation(s)
- Shuaibin Wu
- College of Chemistry and Bioengineering, Yichun University, Xuefu Road No. 576, Yichun 336000, China.
| |
Collapse
|
2
|
Mergbi M, Galloni MG, Aboagye D, Elimian E, Su P, Ikram BM, Nabgan W, Bedia J, Amor HB, Contreras S, Medina F, Djellabi R. Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27484-2. [PMID: 37227629 DOI: 10.1007/s11356-023-27484-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
An exponential rise in global pollution and industrialization has led to significant economic and environmental problems due to the insufficient application of green technology for the chemical industry and energy production. Nowadays, the scientific and environmental/industrial communities push to apply new sustainable ways and/or materials for energy/environmental applications through the so-called circular (bio)economy. One of today's hottest topics is primarily valorizing available lignocellulosic biomass wastes into valuable materials for energy or environmentally related applications. This review aims to discuss, from both the chemistry and mechanistic points of view, the recent finding reported on the valorization of biomass wastes into valuable carbon materials. The sorption mechanisms using carbon materials prepared from biomass wastes by emphasizing the relationship between the synthesis route or/and surface modification and the retention performance were discussed towards the removal of organic and heavy metal pollutants from water or air (NOx, CO2, VOCs, SO2, and Hg0). Photocatalytic nanoparticle-coated biomass-based carbon materials have proved to be successful composites for water remediation. The review discusses and simplifies the most raised interfacial, photonic, and physical mechanisms that might take place on the surface of these composites under light irradiation. Finally, the review examines the economic benefits and circular bioeconomy and the challenges of transferring this technology to more comprehensive applications.
Collapse
Affiliation(s)
- Meriem Mergbi
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Melissa Greta Galloni
- Dipartimento di Chimica, Università Degli Studi Di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ehiaghe Elimian
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Peidong Su
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Belhadj M Ikram
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Chemical and Environmental Engineering, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Jorge Bedia
- Chemical Engineering Department, Autonomous University of Madrid, Madrid, Spain
| | - Hedi Ben Amor
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
| | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Francisco Medina
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
3
|
Jiang F, Li F, Zimmerman AR, Yu Z, Ji L, Wei C, Zhang X, Gao B. Remarkable synergy between sawdust biochar and attapulgite/diatomite after co-ball milling to adsorb methylene blue. RSC Adv 2023; 13:14384-14392. [PMID: 37180009 PMCID: PMC10173820 DOI: 10.1039/d3ra01123b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Biochar has been recognized as a promising sustainable adsorbent for removing pollutants from wastewater. In this study, two natural minerals, attapulgite (ATP) and diatomite (DE) were co-ball milled with sawdust biochar (pyrolyzed at 600 °C for 2 h) at ratios of 10-40% (w/w) and examined the ability of methylene blue (MB) to be removed from aqueous solutions by them. All the mineral-biochar composites sorbed more MB than both ball milled biochar (MBC) and ball milled mineral alone, indicating there was a positive synergy in co-ball milling biochar with these minerals. The 10% (w/w) composites of ATP:BC (MABC10%) and DE:BC (MDBC10%) had the greatest MB maximum adsorption capacities (modeled by Langmuir isotherm modeling) and were 2.7 and 2.3 times that of MBC, respectively. The adsorption capacities of MABC10% and MDBA10% were 183.0 mg g-1 and 155.0 mg g-1 at adsorption equilibrium, respectively. These improvements can be owing to the greater content of oxygen-containing functional groups and higher cation exchange capacity of the MABC10% and MDBC10% composites. In addition, the characterization results also reveal that pore filling, π-π stacking interactions, hydrogen bonding of hydrophilic functional groups, and electrostatic adsorption of oxygen-containing functional groups also contribute prominently to the adsorption of MB. This, along with the greater MB adsorption at higher pH and ionic strengths, suggests the roles in MB adsorption was an electrostatic interaction and an ion exchange mechanism. These results demonstrate that mineral-biochar composites prepared by co-ball milling treatment were promising sorbents of ionic contaminants for environmental applications.
Collapse
Affiliation(s)
- Fei Jiang
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida Gainesville 32611 FL USA
| | - Zhongpu Yu
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Licheng Ji
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Chengcheng Wei
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology Xuzhou 221018 PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida Gainesville 32611 FL USA
| |
Collapse
|
4
|
Xu F, Zhang Z, Shi Y. Preparation of Monolayer Dispersed Fe/Attapulgite Desulfurizer and Its Desulfurization Performance at Low Temperature. ChemistrySelect 2023. [DOI: 10.1002/slct.202204676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Fan Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Zhihong Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Yuanyuan Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| |
Collapse
|
5
|
Li Q, Huang L, Zhu P, Zhong M, Xu S. Rapid adsorption of triclosan and p-chloro-m-xylenol by nitrogen-doped magnetic porous carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1640-1655. [PMID: 35921007 DOI: 10.1007/s11356-022-22084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Contamination of water resources with organic substances like phenolic fungicides is undesirable due to the improvement of living standards, the huge production of chemicals, the heavy consumption of daily chemical products, and the growth of the population. In this study, Co-based zeolitic imidazole framework-67 (ZIF-67(Co)) was synthesized using the "one-pot method," and the best Co-based N-doped magnetic porous carbon (Co-NPC) was prepared by ZIF-67(Co) carbonization in an atmosphere of N2. The materials were tested using an X-ray diffractometer (XRD), scanning electron microscope (SEM), infrared spectroscopy (IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, and magnetization analysis. These characterizations indicated that the Co-NPC was successfully prepared. With the original morphology of ZIF-67(Co) crystals, the Co-NPC also has good porosity, magnetic properties, and a large specific surface area. In water, Co-NPC-800 has a good adsorption capacity for triclosan (TCS) and p-chloro-m-xylenol (PCMX), which are kinds of aromatic fungicides. The adsorption of Co-NPC-800 on both reached equilibrium within 3 min, which is in accordance with the quasi-second-order kinetic model. At 298 K, the maximum adsorption capacity of Co-NPC-800 for TCS and PCMX was 163 and 39 mg·g-1, respectively. The adsorption of TCS and PCMX by Co-NPC-800 is a spontaneous endothermic process with reduced entropy. The combination of Co-NPC-800 and phenols come from multiple actions of electrostatic, π-π, and hydrogen bond effects. Moreover, Co-NPC-800 can be regenerated through simple washing and can be reused at least three times by a magnet. The Co-NPC-800 has good porosity, large specific surface area, comparable adsorption capacity, rapid adsorption time, so it could be broadly used in sewage treatments and other environmental fields.
Collapse
Affiliation(s)
- Qiuxing Li
- College of Earth Science, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Li Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Paijin Zhu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Min Zhong
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China
| | - Shuxia Xu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
6
|
Li N, Fang J, Jiang P, Li C, Kang H, Wang W. Adsorption Properties and Mechanism of Attapulgite to Graphene Oxide in Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2793. [PMID: 35270485 PMCID: PMC8910037 DOI: 10.3390/ijerph19052793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023]
Abstract
In order to remove toxic graphene oxide (GO) from aqueous solution, attapulgite (ATP) was used as adsorbent to recycle it by adsorption. In this paper, the effects of different pH, adsorbent mass, GO concentration, time and temperature on the adsorption of GO by attapulgite were studied, and the adsorption performance and mechanism were further explored by XRD, AFM, XPS, FTIR, TEM and SEM tests. The results show that when T = 303 K, pH = 3, and the GO concentration is 100 mg/L in 50 mL of aqueous solution, the removal rate of GO by 40 mg of attapulgite reaches 92.83%, and the partition coefficient Kd reaches 16.31. The adsorption kinetics results showed that the adsorption equilibrium was reached at 2160 min, and the adsorption process could be described by the pseudo-second-order adsorption equation, indicating that the adsorption process was accompanied by chemical adsorption and physical adsorption. The isotherm and thermodynamic parameters show that the adsorption of GO by attapulgite is more consistent with the Langmuir isotherm model, and the reaction is a spontaneous endothermic process. The analysis shows that attapulgite is a good material for removing GO, which can provide a reference for the removal of GO in an aqueous environment.
Collapse
Affiliation(s)
- Na Li
- School of Civil Engineering, Shaoxing University, Shaoxing 312000, China; (N.L.); (J.F.); (P.J.); (C.L.)
| | - Jiyuan Fang
- School of Civil Engineering, Shaoxing University, Shaoxing 312000, China; (N.L.); (J.F.); (P.J.); (C.L.)
| | - Ping Jiang
- School of Civil Engineering, Shaoxing University, Shaoxing 312000, China; (N.L.); (J.F.); (P.J.); (C.L.)
| | - Cuihong Li
- School of Civil Engineering, Shaoxing University, Shaoxing 312000, China; (N.L.); (J.F.); (P.J.); (C.L.)
| | - Haibo Kang
- School of Civil Engineering, College of Transportation Engineering, Nanjing Tech University, Nanjing 210009, China;
| | - Wei Wang
- School of Civil Engineering, Shaoxing University, Shaoxing 312000, China; (N.L.); (J.F.); (P.J.); (C.L.)
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|