1
|
Botêlho de Araújo CB, Alves de Mendonça S, de Lima Viana D, da Fontoura Martins M, Costa PG, Bianchini A, Vasconcelos de Oliveira PG, Torres RA, Vieira Hazin FH, Adam ML. Effects of blood metal(loid) concentrations on genomic damages in sharks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124569. [PMID: 39025294 DOI: 10.1016/j.envpol.2024.124569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
The use of effect biomarkers has contributed to the understanding of the sublethal effects of contaminants on different organisms. However, the analysis of genotoxic markers as an indicator of organism and environmental health in sharks is underexplored. Thus, the present study investigated the relationship between the genomic damage frequency in erythrocytes and metal(loid) concentrations in whole blood of three shark species (Galeocerdo cuvier, Negaprion brevirostris and Ginglymostoma cirratum), taking into account climatic seasonality. The results showed that G. cuvier, an apex predator, presented the highest total erythrocyte genomic damage frequencies together with the highest mean whole blood concentrations of Al, Cd, Cr, Fe, Mn, Ni, Pb and Zn. The shark N. brevirostris also presented high levels of metal(loid), indicating a greater susceptibility to these contaminants in species that preferentially feed on fish. In contrast, G. cirratum, a mesopredator, presented the lowest erythrocyte damage frequencies and whole blood metal(loid) concentrations. The presence of micronuclei was the most responsive biomarker, and Al, As and Zn had an important effect on the genomic damage frequencies for all species evaluated. Zn concentration influenced the binucleated cells frequencies and Al concentration had an effect on the total damage and micronuclei frequencies in G. cuvier and N. brevirostris. Binucleated cells and blebbed nuclei frequencies were affected by As concentration, especially in G. cirratum, while showing a strong and positive correlation with most of the metals analyzed. Nonetheless, baseline levels of metal(loid) blood concentrations and erythrocyte genomic damage frequencies in sharks have not yet been established. Therefore, minimum risk levels of blood contaminants concentrations on the health of these animals have also not been determined. However, the high genomic instability observed in sharks is of concern considering the current health status of these animals, as well as the quality of the environment studied.
Collapse
Affiliation(s)
- Camila Brasilino Botêlho de Araújo
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil; Evolutionary and Environmental Genomics Laboratory, Federal Technological University of Paraná, Av. dos Pioneiros, 3131, Jardim Morumbi, 86036-370, Londrina, Paraná, Brazil.
| | - Sibele Alves de Mendonça
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil.
| | - Danielle de Lima Viana
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil.
| | - Mariana da Fontoura Martins
- Institute of Biological Sciences, Federal University of Rio Grande, Avenida Itália, km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.
| | - Patrícia Gomes Costa
- Institute of Biological Sciences, Federal University of Rio Grande, Avenida Itália, km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.
| | - Adalto Bianchini
- Institute of Biological Sciences, Federal University of Rio Grande, Avenida Itália, km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.
| | - Paulo Guilherme Vasconcelos de Oliveira
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil.
| | - Rodrigo Augusto Torres
- Evolutionary and Environmental Genomics Laboratory, Federal Technological University of Paraná, Av. dos Pioneiros, 3131, Jardim Morumbi, 86036-370, Londrina, Paraná, Brazil.
| | - Fábio Hissa Vieira Hazin
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil.
| | - Mônica Lúcia Adam
- Evolutionary and Environmental Genomics Laboratory, Federal Technological University of Paraná, Av. dos Pioneiros, 3131, Jardim Morumbi, 86036-370, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Shi X, Cao S, Wang X, Huang S, Wang Y, Liu Z, Liu W, Leng X, Peng Y, Wang N, Wang Y, Ma Z, Xu X, Zhang F, Xue H, Zhong H, Wang Y, Zhang K, Velt A, Avia K, Holtgräwe D, Grimplet J, Matus JT, Ware D, Wu X, Wang H, Liu C, Fang Y, Rustenholz C, Cheng Z, Xiao H, Zhou Y. The complete reference genome for grapevine ( Vitis vinifera L.) genetics and breeding. HORTICULTURE RESEARCH 2023; 10:uhad061. [PMID: 37213686 PMCID: PMC10199708 DOI: 10.1093/hr/uhad061] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/02/2023] [Indexed: 05/23/2023]
Abstract
Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres, limiting the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the study of inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar PN40024 using PacBio HiFi long reads. The T2T reference genome (PN_T2T) is 69 Mb longer with 9018 more genes identified than the 12X.v0 version. We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T assembly. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though PN40024 derives from nine generations of selfing, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome therefore constitutes an important resource for grapevine genetic studies and breeding programs.
Collapse
Affiliation(s)
- Xiaoya Shi
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Siyang Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yue Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zhongjie Liu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenwen Liu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanling Peng
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Nan Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yiwen Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fan Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hui Xue
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haixia Zhong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Amandine Velt
- SVQV, INRAE - University of Strasbourg, 68000 Colmar, France
| | - Komlan Avia
- SVQV, INRAE - University of Strasbourg, 68000 Colmar, France
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Jérôme Grimplet
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Systems Biotech Program, Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- USDA ARS NEA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, NY 14853, USA
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Haibo Wang
- Fruit Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture/Key Laboratory of Mineral Nutrition and Fertilizers Efficient Utilization of Deciduous Fruit Tree, Liaoning Province, Xingcheng 125100, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450004, China
| | - Yuling Fang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | | | - Zongming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Xiao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yongfeng Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
3
|
Ren M, Li R, Han B, You Y, Huang W, Du G, Zhan J. Involvement of the High-Osmolarity Glycerol Pathway of Saccharomyces Cerevisiae in Protection against Copper Toxicity. Antioxidants (Basel) 2022; 11:antiox11020200. [PMID: 35204083 PMCID: PMC8868352 DOI: 10.3390/antiox11020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/05/2023] Open
Abstract
Although essential for life, copper is also potentially toxic in concentrations that surpass physiological thresholds. The high-osmolarity glycerol pathway of yeast is the main regulator of adaptive responses and is known to play crucial roles in the responses to various stressors. The objective of this research is to determine whether the HOG pathway could be activated and to investigate the possible interplay of the HOG pathway and oxidative stress due to copper exposure. In this research, we demonstrate that copper could induce oxidative stress, including the elevated concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA). Increased combination with GSH, increased intracellular SOD activity, and the up-regulation of relevant genes can help cells defend themselves against oxidative toxicity. The results show that copper treatment triggers marked and prolonged Hog1 phosphorylation. Significantly, oxidative stress generated by copper toxicity is essential for the activation of Hog1. Activated Hog1 is translocated to the nucleus to regulate the expressions of genes such as CTT1, GPD1, and HSP12, among others. Furthermore, copper exposure induced significant G1-phase cell cycle arrest, while Hog1 partially participated in the regulation of cell cycle progression. These novel findings reveal another role for Hog1 in the regulation of copper-induced cellular stress.
Collapse
Affiliation(s)
- Mengmeng Ren
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (M.R.); (R.L.); (B.H.); (Y.Y.); (W.H.)
| | - Ruilong Li
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (M.R.); (R.L.); (B.H.); (Y.Y.); (W.H.)
| | - Bin Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (M.R.); (R.L.); (B.H.); (Y.Y.); (W.H.)
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (M.R.); (R.L.); (B.H.); (Y.Y.); (W.H.)
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (M.R.); (R.L.); (B.H.); (Y.Y.); (W.H.)
| | - Gang Du
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Correspondence: (G.D.); (J.Z.)
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (M.R.); (R.L.); (B.H.); (Y.Y.); (W.H.)
- Correspondence: (G.D.); (J.Z.)
| |
Collapse
|