1
|
Chen C, Cheng J, Xiao Y, Kong T, Tang H, Xie Q, Chen C. Carbon nanotube-interconnected ruthenium phthalocyanine nanoparticles used for real-time monitoring of nitric oxide released from vascular endothelial barrier model. Biosens Bioelectron 2024; 250:116048. [PMID: 38266618 DOI: 10.1016/j.bios.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Real-time monitoring of nitric oxide (NO) is of great importance in diagnosing the physiological functions of neurotransmission, cardiovascular, and immune systems. This study reports the carbon nanotube-interconnected ruthenium phthalocyanine nanoparticle nanocomposite and its applicability in construction of an electrochemical platform, which could real-time detect NO released from the vascular endothelial barrier (VEB) model in cell culture medium. The nanocomposite exhibits regular morphology, uniform particle size, and excellent electro-catalytic activity to electrochemical oxidation of NO. Under optimal conditions, the electrochemical device has high sensitivity (0.871 μA μM-1) and can selectively detect NO down to the concentration of 6 × 10-10 M. The human brain microvascular endothelial cells were cultured onto the Transwell support to construct the VEB model. Upon stimulated by L-arginine, NO produced by the VEB diffuses into the bottom chamber of the Transwell, and is real-time monitored by the electrochemical device. Moreover, evaluation of the NO inhibition by drug is realized using the electrochemical device-Transwell platform. This simple and sensitive platform would be of great interesting for evaluating the endothelial function or its pathological states, and screening the related drugs or chemicals.
Collapse
Affiliation(s)
- Chenpu Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jun Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yawen Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tong Kong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Hao Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| |
Collapse
|
2
|
Zang Y, Wu Q, Wang S, Huang B, Dai Y, Ma Y. Activating dual atomic electrocatalysts for the nitric oxide reduction reaction through the P/S element. MATERIALS HORIZONS 2023; 10:2160-2168. [PMID: 36961303 DOI: 10.1039/d2mh01440h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of efficient atomic electrocatalysts to resolve the activity and selectivity issues of the nitric oxide reduction reaction (NORR) has increasingly received more attention but is still challenging. The current research on the dual atomic NORR electrocatalyst is exclusively focused on TM atoms. Herein, we propose a novel mechanism of introducing a P/S element, which takes advantage of finite orbitals to active the transition metal (TM) atoms of dual atomic electrocatalysts for NORR. The finite orbitals can hinder the capture of the lone pair electrons of NO but modulate the electronic configurations of the neighboring TM and thus the "donation-backdonation" mechanism can be realized. Through large-scale first-principles calculations, the catalytic performance of a series of P/S-TM biatoms supported by the monolayer CN (P/S-TM@CN) is evaluated. According to a "four-step" screening strategy, P-Cu@CN and S-Ni@CN are successfully screened as promising catalysts with outstanding activity and high selectivity for direct NO-to-NH3 conversion. Moreover, we identify Δεd-p as a valid descriptor to evaluate the adsorption of NO on such catalysts, allowing for reducing the number of catalytic candidates. Our work thus provides a new direction for the rational design of dual atomic electrocatalysts.
Collapse
Affiliation(s)
- Yanmei Zang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Qian Wu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Shuhua Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| |
Collapse
|
3
|
Wang Q, Yang C, Yan Y, Yu H, Guan A, Kan M, Zhang Q, Zhang L, Zheng G. Electrocatalytic CO 2 Upgrading to Triethanolamine by Bromine-Assisted C 2 H 4 Oxidation. Angew Chem Int Ed Engl 2023; 62:e202212733. [PMID: 36286347 DOI: 10.1002/anie.202212733] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/05/2022]
Abstract
The electrocatalytic carbon dioxide (CO2 ) reduction is a promising approach for converting this greenhouse gas into value-added chemicals, while the capability of producing products with longer carbon chains (Cn >3) is limited. Herein, we demonstrate the Br-assisted electrocatalytic oxidation of ethylene (C2 H4 ), a major CO2 electroreduction product, into 2-bromoethanol by electro-generated bromine on metal phthalocyanine catalysts. Due to the preferential formation of Br2 over *O or Cl2 to activate the C=C bond, a high partial current density of producing 2-bromoethanol (46.6 mA⋅cm-2 ) was obtained with 87.2 % Faradaic efficiency. Further coupling with the electrocatalytic nitrite reduction to ammonia at the cathode allowed the production of triethanolamine with six carbon atoms. Moreover, by coupling a CO2 electrolysis cell for in situ C2 H4 generation and a C2 H4 oxidation/nitrite reduction cell, the capability of upgrading of CO2 and nitrite into triethanolamine was demonstrated.
Collapse
Affiliation(s)
- Qihao Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Yaqin Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Haisheng Yu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Anxiang Guan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Miao Kan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Quan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| |
Collapse
|
4
|
Lin L, Pang D, Shi P, Xie K, Su L, Zhang Z. First-principles study of TM supported SnSe2 monolayer as an efficient electrocatalyst for NOER. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Tursun M, Wu C. Single Transition Metal Atoms Anchored on Defective MoS 2 Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine. Inorg Chem 2022; 61:17448-17458. [DOI: 10.1021/acs.inorgchem.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mamutjan Tursun
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an710054, China
- College of Chemistry and Environmental Science, Kashgar University, Kashgar844000, Xinjiang, China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an710054, China
| |
Collapse
|
6
|
He C, Yang H, Xi M, Fu L, Huo J, Zhao C. Efficient electrocatalytic reduction of NO to ammonia on BC 3 nanosheets. ENVIRONMENTAL RESEARCH 2022; 212:113479. [PMID: 35588777 DOI: 10.1016/j.envres.2022.113479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Searching for an economical and highly efficient electrocatalytic reduction catalyst for ammonia synthesis under controllable conditions is a very attractive and challenging subject in chemistry. In this study, we systematically studied the electrocatalytic performance of BC3 nanosheets as potential NO reduction reaction (NORR) electrocatalysts using density functional theory (DFT) calculations. It was found that BC3 two-dimensional (2D) materials exhibit excellent catalytic activity with a very low limiting potential of -0.29/-0.11 V along three reaction paths. The total reaction is NO (g)+5H++5e-→NH3(g)+ H2O. The density of states of adsorbed NO, NH3, and the corresponding crystal orbital hamiltonian population (COHP) analysis revealed the mechanism of NO being activated and the reasons for NH3 adsorption/desorption on the surface of BC3. The reaction path, limiting potential, and Gibbs free energy calculations of BC3 catalyzed NO to ammonia synthesis revealed that for path 1, the potential-determining step is *NO+H++e-→*NOH, and for path 2/3 the potential-determining step is *NO+(H++e-)→*HNO. Calculation of the thermodynamic energy barriers for NO dissociation at the BC3 surface and NO hydrogenation reveals that NO is more likely to be hydrogenated rather than dissociated. The influences of the proton-electron hydrogenation site on the process of ammonia synthesis in the key reduction step were analyzed by Bader charge analysis and charge density, it is pointed out that the electronic structure and affects the reaction process can be controlled by hydrogenation at different sites of intermediates. These results pave the way for using nitrogen oxides not just nitrogen as raw materials for ammonia synthesis with 2D materials.
Collapse
Affiliation(s)
- Chaozheng He
- Institute of Environment and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Houyong Yang
- Institute of Environment and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Menghui Xi
- Institute of Environment and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Ling Fu
- College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui, 741001, China.
| | - Jinrong Huo
- School of Sciences, Xi'an Technological University, Xi'an, Shaanxi, 710021, China
| | - Chenxu Zhao
- Institute of Environment and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China; Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China
| |
Collapse
|
7
|
Tong T, Linghu Y, Wu G, Wang C, Wu C. Nitric oxide electrochemical reduction reaction on transition metal-doped MoSi 2N 4 monolayers. Phys Chem Chem Phys 2022; 24:18943-18951. [PMID: 35916291 DOI: 10.1039/d2cp01500e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide electrochemical reduction (NOER) reactions are usually catalyzed by noble metals. However, the commercial applications are limited by the low atomic utilization and high price, which prompt researchers to turn their attentions to single-atom catalysts (SACs). Recently, a novel two-dimensional semiconducting material MoSi2N4 (MSN) has been synthesized and is suitable for the substrate of SACs due to its high stability, carrier mobility and mechanical strength. Herein, we employed first principles calculations to investigate the catalytic properties of transition metal doped MoSi2N4 monolayers (labelled as TM-MSN, where TM is a transition metal atom from 3d to 5d except Y, Tc, Cd, La-Lu and Hg) in NO reduction. The calculated results demonstrate that the introduction of Zr, Pd, Pt, Mn, Au, or Mo atoms can greatly improve the catalytic NOER performance of a pristine MSN monolayer. Zr-MSN and Pt-MSN monolayers at low coverage exhibit the most superior catalytic activity and selectivity for NH3 production with a limiting potential of 0 and -0.10 V. This work may help guide the application of MSN monolayer in the area of energy conversion.
Collapse
Affiliation(s)
- Tianyue Tong
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China. .,Advanced Energy Materials and Systems Institute, North University of China, Taiyuan 030051, P. R. China.
| | - Yaoyao Linghu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China. .,Advanced Energy Materials and Systems Institute, North University of China, Taiyuan 030051, P. R. China.
| | - Guangping Wu
- Advanced Energy Materials and Systems Institute, North University of China, Taiyuan 030051, P. R. China. .,School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P. R. China
| | - Chao Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China. .,Advanced Energy Materials and Systems Institute, North University of China, Taiyuan 030051, P. R. China.
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| |
Collapse
|
8
|
He C, Shi P, Pang D, Zhang Z, Lin L. Design of S-vacancy FeS2 as an electrocatalyst for NO reduction reaction: A DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zang Y, Wu Q, Wang S, Huang B, Dai Y, Ma Y. High-Throughput Screening of Efficient Biatom Catalysts Based on Monolayer Carbon Nitride for the Nitric Oxide Reduction Reaction. J Phys Chem Lett 2022; 13:527-535. [PMID: 35007068 DOI: 10.1021/acs.jpclett.1c03938] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring efficient catalysts for the nitric oxide reduction reaction (NORR) toward NH3 synthesis is becoming increasingly important for tackling both NH3 synthesis and NO removal problems. Currently, only a few NORR catalysts have been proposed, which are exclusively concentrated on bulk metals or single-atom catalysts. Here, taking monolayer C2N as an example, we explore the potential of biatom catalysts (BACs) for direct NO-to-NH3 conversion by means of high-throughput first-principles calculations. According to a rational five-step screening strategy, a promising BAC of Cr2-C2N is successfully screened out, exhibiting high stability, activity, and selectivity and a low kinetic barrier for the NORR toward NH3 synthesis. Importantly, the adsorption energy of N atoms (ΔE*N) and the Gibbs free energy of NO adsorption (ΔG*NO) are identified as effective descriptors for efficient NORR catalysts. In addition, through tuning the NO coverage, the NORR on Cr2-C2N could produce different products of NH3 and N2O, providing the possibility to realize controllable multiproduct BACs. These findings not only suggest the great potential of BACs for direct NO-to-NH3 conversion but also help in rationally designing high-performance BACs.
Collapse
Affiliation(s)
- Yanmei Zang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| | - Qian Wu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| | - Shuhua Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| |
Collapse
|
10
|
Muthuraman G, Silambarasan P, Moon I. Homogeneous Ni(I)tetra Sulfonated Phthalocyanine Electrocatalyst Generated at Low Overpotential Clubbed with a Wet‐Scrubbing Column for High Efficiency NO Reduction to NH
3. ChemistrySelect 2021. [DOI: 10.1002/slct.202103406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- G. Muthuraman
- Department of Chemical Engineering Sunchon National University 255-Jungang ro Suncheon-si Jeollanam-do 57922 South Korea
| | - P. Silambarasan
- Department of Chemical Engineering Sunchon National University 255-Jungang ro Suncheon-si Jeollanam-do 57922 South Korea
| | - I.‐S. Moon
- Department of Chemical Engineering Sunchon National University 255-Jungang ro Suncheon-si Jeollanam-do 57922 South Korea
| |
Collapse
|
11
|
Liu S, Liu Y, Cheng Z, Tan Y, Ren Y, Yuan T, Shen Z. Catalytic Role of Adsorption of Electrolyte/Molecules as Functional Ligands on Two-Dimensional TM-N 4 Monolayer Catalysts for the Electrocatalytic Nitrogen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40590-40601. [PMID: 34415719 DOI: 10.1021/acsami.1c10367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional single-atom catalysts (2D SACs) have been widely studied on the nitrogen reduction reaction (NRR). The characteristics of 2D catalysts imply that both sides of the monolayer can be catalytic sites and adsorb electrolyte ions or molecules from solutions. Overstrong adsorption of electrolyte ions or molecules on both sides of the catalyst site will poison the catalyst, while the adsorbate on one side of the catalytic site will modify the activity and selectivity of the other side for NRR. Discovering the influence of adsorption of electrolyte ions or molecules as a functional ligand on catalyst performance on the NRR is crucial to improve NRR efficiency. Here, we report this work using the density functional theory (DFT) method to investigate adsorption of electrolyte ions or molecules as a functional ligand. Among all of the studied 18 functional ligands and 3 transition metals (TMs), the results showed that Ru&F, Ru&COOH, and Mo&H2O combinations were screened as electrocatalysis systems with high activity and selectivity. Particularly, the Mo&H2O combination possesses the highest activity with a low ΔGMAX of 0.44 eV through the distal pathway. The superior catalytic performance of the Mo&H2O combination is mainly attributed to the electron donation from the metal d orbital. Furthermore, the functional ligands can occupy the active sites and block the competing vigorous hydrogen evolution reaction. Our findings offer an effective and practical strategy to design the combination of the catalyst and electrolyte to improve electrocatalytic NRR efficiency.
Collapse
Affiliation(s)
- Shiqiang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yujia Tan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, P. R. China
- State Environmental Protection Key laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200092, P. R. China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, P. R. China
- State Environmental Protection Key laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200092, P. R. China
| |
Collapse
|