1
|
Silva TP, Paixão SM, Tavares J, Paradela F, Crujeira T, Roseiro JC, Alves L. Streamlining the biodesulfurization process: development of an integrated continuous system prototype using Gordonia alkanivorans strain 1B. RSC Adv 2024; 14:725-742. [PMID: 38173596 PMCID: PMC10758933 DOI: 10.1039/d3ra07405f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Biodesulfurization is a biotechnological process that uses microorganisms as biocatalysts to actively remove sulfur from fuels. It has the potential to be cleaner and more efficient than the current industrial process, however several bottlenecks have prevented its implementation. Additionally, most works propose models based on direct cultivation on fuel, or batch production of biocatalysts followed by a processing step before application to batch biodesulfurization, which are difficult to replicate at a larger scale. Thus, there is a need for a model that can be adapted to a refining process, where fuel is being continuously produced to meet consumer needs. The main goal of this work was to develop the first bench-scale continuous biodesulfurization system that integrates biocatalyst production, biodesulfurization and fuel separation, into a single continuous process, taking advantage of the method for the continuous production of the biodesulfurization biocatalysts previously established. This system eliminates the need to process the biocatalysts and facilitates fuel separation, while mitigating some of the process bottlenecks. First, using the bacterium Gordonia alkanivorans strain 1B, continuous culture conditions were optimized to double biocatalyst production, and the produced biocatalysts were applied in batch biphasic biodesulfurization assays for a better understanding of the influence of different factors. Then, the novel integrated system was developed and evaluated using a model fuel (n-heptane + dibenzothiophene) in continuous biodesulfurization assays. With this system strain 1B surpassed its highest biodesulfurization rate, reaching 21 μmol h-1 g-1. Furthermore, by testing a recalcitrant model fuel, composed of n-heptane with dibenzothiophene and three alkylated derivatives (with 109 ppm of sulfur), 72% biodesulfurization was achieved by repeatedly passing the same fuel through the system, maintaining a constant response throughout sequential biodesulfurization cycles. Lastly, the system was also tested with real fuels (used tire/plastic pyrolysis oil; sweet and sour crude oils), revealing increased desulfurization activity. These results highlight the potential of the continuous biodesulfurization system to accelerate the transition from bench to commercial scale, contributing to the development of biodesulfurization biorefineries, centered on the valorization of sulfur-rich residues/biomasses for energy production.
Collapse
Affiliation(s)
- Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Filipe Paradela
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Teresa Crujeira
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - José C Roseiro
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| |
Collapse
|
2
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Al-Khazaali WMK, Ataei SA, Khesareh S. Biodesulfurization of Fossil Fuels: Analysis and Prospective. F1000Res 2023; 12:1116. [PMID: 38533421 PMCID: PMC10964007 DOI: 10.12688/f1000research.133427.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 03/28/2024] Open
Abstract
Biodesulfurization (BDS) of fossil fuels is a promising method for treating the high content of sulfur in crude oils and their derivatives in the future, attributed to its environmental-friendly nature and the technical efficient ability to desulfurize the organosulfur compounds recalcitrant on other techniques. It was found that the bioreaction rate depends on the treated fluid, targeting sulfur compounds, and the microorganism applied. Also, many studies investigated the operation conditions, specificity, and biocatalysts modification to develop BDS efficiency. Furthermore, mathematical kinetics models were formulated to represent the process. In this review, the previous studies are analyzed and discussed. This review article is characterized by a clear picture of all BDS's experimental, industrial, procedural, theoretical, and hypothetical points.
Collapse
Affiliation(s)
| | - Seyed Ahmad Ataei
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Khesareh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Advancing Desulfurization in the Model Biocatalyst Rhodococcus qingshengii IGTS8 via an In Locus Combinatorial Approach. Appl Environ Microbiol 2023; 89:e0197022. [PMID: 36688659 PMCID: PMC9973023 DOI: 10.1128/aem.01970-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter Pdsz, with the nonrepressible Pkap1 promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.
Collapse
|
5
|
Influence of different nanocomposite carbon-based adsorbers on the adsorption desulfurization of dibenzothiophene in model oil and diesel fuel: a comparative study. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Biodesulfurization of Dibenzothiophene by Decorating Rhodococcus erythropolis IGTS8 Using Montmorillonite/Graphitic Carbon Nitride. Catalysts 2022. [DOI: 10.3390/catal12111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fossil fuels are the main sources of human energy, but their combustion releases toxic compounds of sulfur oxide. In the oil industry, using the optimal methods to eliminate sulfur compounds from fossil fuels is a very important issue. In this study, the performance of montmorillonite/graphitic carbon nitride (a new hybrid nanostructure) in increasing the biodesulfurization activity of Rhodococcus erythropolis IGTS8 was investigated. X-ray diffraction, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy were used for the characterization of the nanoparticles. The effective factors in this process were determined. Optimum conditions for microorganisms were designed using the Design Expert software. Experiments were performed in a flask. The results indicated that the biodesulfurization activity of a microorganism in the presence of the nanostructure increases by 52%. In addition, in the presence of the nanostructure, the effective factors are: 1. concentration of the nanostructure; 2. concentration of sulfur; 3. cell concentration. In the absence of the nanostructure, the only effective factor is the concentration of sulfur. Through analysis of variance, the proposed models were presented to determine the concentration of the 2-hydroxy biphenyl produced by the microorganisms (biodesulfurization activity) in the presence and absence of the nanostructure. The proposed models were highly acceptable and consistent with experimental data. The results of a Gibbs assay showed that the biodesulfurization efficiency of in the presence of the nanostructure was increased by about 52%, which is a very satisfactory result. The biodesulfurization activity of decorated cells in a bioreactor showed a significant increase compared with nondecorated cells. Almost a two-fold improvement in biodesulfurization activity was obtained for decorated cells compared with free cells.
Collapse
|
7
|
Li H, Wang B, Yang H, Lu Z, Liu W, Bai Z. Deep desulfurization of alkylated oil by alumina adsorbents: characteristics and mechanism study. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deep desulfurization of alkylated oil is the primary problem that has long plagued the petroleum refining industry. In this study, alkaline alumina adsorbent microspheres were synthesized by carbonization - hot oil column pelletization method. The adsorption desulfurization performance of as-synthesized adsorbent and three commercial alumina-based adsorbents were systematically evaluated and compared. The results showed that alkaline alumina adsorbent had the optimal adsorption performance with a saturated adsorption capacity of 8.604 mg·g<sup>-1</sup>. Meanwhile, FTIR and sulfur speciation analysis indicated that the alkaline alumina adsorbent could deeply remove various sulfides (methyl mercaptan, dimethyl disulfide, hexacarbon sulfide, dibenzothiophene, <i>etc.</i>) from alkylated oil. Furthermore, the adsorption kinetics study manifested that the adsorption of sulfide was dominated by chemical adsorption, supplemented by physical adsorption, and accompanied by competitive adsorption among different sulfides. In addition, the regeneration experiment showed that nitrogen (90 °C) could realize the stable regeneration of the alkaline alumina adsorbent. To ensure stable regeneration performance in industry, it is recommended that the alkaline alumina adsorbent be regenerated once with nitrogen at 90 °C. This study will provide theoretical support for the process optimization of deep desulfurization of alkylated oil and contribute to the high-quality production of clean fuels worldwide.
Collapse
Affiliation(s)
- Hui Li
- East China University of Science and Technology School of Mechanical Engineering and Power Engineering, 539687, Shanghai, China
| | - Bingjie Wang
- East China University of Science and Technology School of Mechanical Engineering and Power Engineering, 539687, Shanghai, China
| | - Hang Yang
- East China University of Science and Technology School of Mechanical Engineering and Power Engineering, 539687, Shanghai, China
| | - Zhaojin Lu
- East China University of Science and Technology School of Mechanical Engineering and Power Engineering, 539687, Shanghai, China
| | - Wenxia Liu
- East China University of Science and Technology School of Mechanical Engineering and Power Engineering, 539687, Shanghai, China
| | - Zhishan Bai
- East China University of Science and Technology School of Mechanical Engineering and Power Engineering, 539687, Shanghai, China
| |
Collapse
|
8
|
Nassar HN, Rabie AM, Abu Amr SS, El-Gendy NS. Kinetic and statistical perspectives on the interactive effects of recalcitrant polyaromatic and sulfur heterocyclic compounds and in-vitro nanobioremediation of oily marine sediment at microcosm level. ENVIRONMENTAL RESEARCH 2022; 209:112768. [PMID: 35085558 DOI: 10.1016/j.envres.2022.112768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A halotolerant biosurfactant producer Pseudomonas aeruginosa strain NSH3 (NCBI Gene Bank Accession No. MN149622) was isolated to degrade high concentrations of recalcitrant polyaromatic hydrocarbons (PAHs) and polyaromatic heterocyclic sulfur compounds (PASHs). In biphasic batch bioreactors, the biodegradation and biosurfactant-production activities of NSH3 have been significantly enhanced (p < 0.0001) by its decoration with eco-friendly prepared magnetite nanoparticles (MNPs). On an artificially contaminated sediment microcosm level, regression modeling and statistical analysis based on a 23 full factorial design of experiments were trendily applied to provide insights into the interactive impacts of such pollutants. MNPs-coated NSH3 were also innovatively applied for nanobioremediation (NBR) of in-vitro diesel oil-polluted sediment microcosms. Gravimetric, chromatographic, and microbial respiratory analyses proved the significantly enhanced biodegradation capabilities of MNPs-coated NSH3 (p < 0.001) and the complete mineralization of various recalcitrant diesel oil components. Kinetic analyses showed that the biodegradation of iso- and n-alkanes was best fitted with a second-order kinetic model equation. Nevertheless, PAHs and PASHs in biphasic batch bioreactors and sediment microcosms followed the first-order kinetic model equation. Sustainable NBR overcome the toxicity of low molecular weight hydrocarbons, mass transfer limitation, and steric hindrance of hydrophobic recalcitrant high molecular weight hydrocarbons and alkylated polyaromatic compounds.
Collapse
Affiliation(s)
- Hussein N Nassar
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6(th) of October City, Giza, PO, 12566, Egypt
| | - Abdelrahman M Rabie
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt
| | - Salem S Abu Amr
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Karabuk University, Demir Campus, Karabuk, PO, 78050, Turkey
| | - Nour Sh El-Gendy
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6(th) of October City, Giza, PO, 12566, Egypt.
| |
Collapse
|
9
|
Abdurrashid H, Merican ZMA, Musa SG. Recent advances in catalytic oxidative desulfurization of fuel oil – A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Effect of desilication of NaY zeolite on sulfur content reduction of gasoline model in presence of toluene and cyclohexene. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Tugrul Albayrak A, Tavman A. Sono-oxidative desulfurization of fuels using heterogeneous and homogeneous catalysts: A comprehensive review. ULTRASONICS SONOCHEMISTRY 2022; 83:105845. [PMID: 35151195 PMCID: PMC8841374 DOI: 10.1016/j.ultsonch.2021.105845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/04/2021] [Accepted: 11/22/2021] [Indexed: 05/27/2023]
Abstract
Recently, environmental pollution has increased significantly due to petroleum-based fuels widely used in vehicles. This environmental pollution is mainly due to the acidic SO2 gas generated by the combustion of fuels and emitted into the atmosphere. SO2 gas causes not only acid rain but also corrosion of metal parts of engines in vehicles. In addition, it functions as a catalyst poison in catalytic converters in exhaust system. Due to these damages, strict regulations have been introduced to reduce the amount of sulfur in fuels. As of 2005, the permissible amount of sulfur in diesel fuels in Europe and America has been limited to 10 and 15 ppm by weight, respectively. Due to the decreasing oil reserves in the world, high viscosity petroleums containing high sulfur and heavier fractions (i.e., low-quality oils) are increasing, thus making desulfurization difficult and leading to high costly process. Since time and economic loss are very important today, these two terms have to be reduced to a minimum. Recently, ultrasound wave in ODS shown as an alternative to HDS is utilized to further increase desulfurization in shorter times. Ultrasound wave locally creates high temperatures and high pressures (hot-spot theory) in liquid, causing the desulfurization reaction to accelerate further. In this review, the advantages and difficulties of oxidative desulfurization, the economics of ultrasound-assisted oxidative desulfurization are summarized and recommendations for improving the process are presented.
Collapse
Affiliation(s)
- Ali Tugrul Albayrak
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey.
| | - Aydin Tavman
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey
| |
Collapse
|
12
|
Biodesulfurization of Dibenzothiophene and Its Alkylated Derivatives in a Two-Phase Bubble Column Bioreactor by Resting Cells of Rhodococcus erythropolis IGTS8. Processes (Basel) 2021. [DOI: 10.3390/pr9112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biodesulfurization (BDS) is considered a complementary technology to the traditional hydrodesulfurization treatment for the removal of recalcitrant sulfur compounds from petroleum products. BDS was investigated in a bubble column bioreactor using two-phase media. The effects of various process parameters, such as biocatalyst age and concentration, organic fraction percentage (OFP), and type of sulfur compound—namely, dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), and 4,6-diethyldibenzothiophene (4,6-DEDBT)—were evaluated, using resting cells of Rhodococcus erythropolis IGTS8. Cells derived from the beginning of the exponential growth phase of the bacterium exhibited the highest biodesulfurization efficiency and rate. The biocatalyst performed better in an OFP of 50% v/v. The extent of DBT desulfurization was dependent on cell concentration, with the desulfurization rate reaching its maximum at intermediate cell concentrations. A new semi-empirical model for the biphasic BDS was developed, based on the overall Michaelis-Menten kinetics and taking into consideration the deactivation of the biocatalyst over time, as well as the underlying mass transfer phenomena. The model fitted experimental data on DBT consumption and 2-hydroxibyphenyl (2-HBP) accumulation in the organic phase for various initial DBT concentrations and different organosulfur compounds. For constant OFP and biocatalyst concentration, the most important parameter that affects BDS efficiency seems to be biocatalyst deactivation, while the phenomenon is controlled by the affinities of biodesulfurizing enzymes for the different organosulfur compounds. Thus, desulfurization efficiency decreased with increasing initial DBT concentration, and in inverse proportion to increases in the carbon number of alkyl substituent groups.
Collapse
|