1
|
Gao T, Wang W, Ma J, Zheng T, Li L. Diffusion behavior and transport risk of bioaerosol particles in a domestic waste landfill site in an arid and cold region of northwestern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135629. [PMID: 39197283 DOI: 10.1016/j.jhazmat.2024.135629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Bioaerosols have attracted increasing attention as novel contaminants because of their potential role in the spread of disease. In this study, sampling sites were established in a landfill in northwestern China with the aim of investigating the emission and diffusion characteristics of bioaerosols. The results revealed that the counts of airborne bacteria released by landfill cover area (LCA) and waste dumping area (WDA) located in the landfill area reached 18 193 ± 30 CFU/m3 and 10 948 ± 105 CFU/m3, respectively. These two aeras were the main sources of bioaerosol generation. Meanwhile, Corynebacterium spp., Bacteroidetes spp., and Pseudomonas spp. were identified as potential pathogens. A Gaussian model was applied to simulate the diffusion of the bioaerosols; the influence distance was calculated as 12 km from the boundary of the landfill site. The potential health risks of bioaerosol exposure to on-site workers and nearby residents were calculated and evaluated in terms of aerosol concentration, particle size, and pathogenic bacteria. The present study promotes the recognition of the emission behavior of microorganisms in aerosol particles and provides a basis for controlling bioaerosol contamination from landfill sites, particularly those located in cold and arid northwestern regions of China.
Collapse
Affiliation(s)
- Tong Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jiawei Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Tianlong Zheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| |
Collapse
|
2
|
Wang Y, Liu Y, Xue S, Chai F, Zhang S, Yang K, Liu Y, Li J, Yu F. Comparative analysis of bioaerosol emissions: Seasonal dynamics and exposure risks in hospital vs. municipal wastewater treatment systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124608. [PMID: 39053807 DOI: 10.1016/j.envpol.2024.124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Hospital wastewater is known to contain various pathogenic microorganisms and harmful substances. During the hospital wastewater treatment process, the bioaerosols released may encapsulate these pathogens, leading to human infection. This study undertook an investigation to compare the dispersion characteristics and seasonal variations of bioaerosols from hospital and municipal sewage. The results indicated that the airborne bacterial concentration from hospital sewage (119 ± 118 CFU/m3) was higher than municipal sewage (46 ± 19 CFU/m3), with the highest concentration observed in summer. The dominant bacterial genera present in bioaerosols from both sewages were alike, with the proportions varied by sewage types and the structure mainly influenced by seasonal factors. Bacteroides, Escherichia-Shigella and Streptococcus were identified as the most prevalent pathogenic genera in spring, summer and winter bioaerosols, respectively, while Pseudomonas and Acinetobacter were abundant in autumn. Although the non-carcinogenic risk associated with bioaerosols was low (<1), the presence of pathogenic species and their potential synergistic interactions elevated the overall exposure risk. The diffusion modeling results demonstrated that bioaerosol emissions from the surface of hospital sewage can reach up to 10570 CFU/m3 in summer and can spread more than 300 m downwind. The potential pathogenicity of bioaerosols was also highest in summer, which may pose a health hazard to populations located downwind. Therefore, the management and control of bioaerosols from sewage should be strengthened, especially in summer.
Collapse
Affiliation(s)
- Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yang Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Song Xue
- CSCEC SCIMEE Sci.& Tech. Co., Ltd, Chengdu, 610045, PR China.
| | - Fengguang Chai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Song Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Kai Yang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yifan Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Jinlong Li
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Fangfang Yu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
3
|
Zhang Z, Li J, Jiang Y, Zhao L, Bai L, Yang J, Pang H, Lu J. Emission Characteristics of Aerosols Generated during the Micro-Nano Bubble Aeration Process in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17396-17405. [PMID: 39192731 DOI: 10.1021/acs.est.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Micro-nano bubble (MNB) aeration is an emerging technology that considerably enhances the aeration efficiency of wastewater. This study evaluates, for the first time, aerosolization at the water-air interface during MNB aeration. Our results show that the concentration of culturable mixed microorganisms (i.e., bacteria, fungi, and intestinal bacteria) in the in situ MNB generation (MNBs-G) phase is 2170 CFU/m3, 1.38 and 1.58-fold higher than those in medium-bubble aeration (MBA; 1568 CFU/m3) and small-bubble aeration (SBA; 1376 CFU/m3) aerosols, respectively. Conversely, the concentration of culturable mixed microorganisms in the MNB persistent dissolved oxygen (MNBs-O) phase is only 914 CFU/m3. Microbiological analysis shows a lower abundance of bacterial pathogens in MNBs-G (34.12%) and MNBs-O (34.02%) phases than in MBA (39.63%) and SBA (38.87%) aerosols. Acinetobacter is prevalent in MNBs-G (14.76%) and MNBs-O (8.22%) aerosols, whereas Bacillus and Arcobacter are prevalent in MBA (23.96%) and SBA (6.92%) aerosols, respectively. The total concentrations of chemicals [i.e., total organic carbon, water-soluble ions, and metal(loid)s] in aerosols formed via MNB aeration (205.98-373.74 μg/m3) are lower than those in MBA and SBA (398.69-594.92 μg/m3). Compared to MBA and SBA, the MNBs-G phase exhibits higher emissions of 12 elements in aerosols (i.e., NO3-, NO2-, Ca2+, Na+, K+, Mg2+, Zn, Cd, Fe, Mn, As, and Cr), whereas the MNBs-O phase generally shows lower emissions. These findings highlight the potential of optimized MNB aeration technology in considerably mitigating aerosol emissions and thereby advancing environmental sustainability in wastewater treatment.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Yijin Jiang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Lei Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| |
Collapse
|
4
|
Han Y, Yu X, Cao Y, Liu J, Wang Y, Liu Z, Lyu C, Li Y, Jin X, Zhang Y, Zhang Y. Transport and risk of airborne pathogenic microorganisms in the process of decentralized sewage discharge and treatment. WATER RESEARCH 2024; 256:121646. [PMID: 38657309 DOI: 10.1016/j.watres.2024.121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Sewage treatment processes are a critical anthropogenic source of bioaerosols and may present significant health risks to plant workers. Compared with the specialization and scale of urban sewage treatment, many decentralized treatment models are flexible and extensive. These treatment facilities are usually close to residential areas owing to the pipe network layout and other restrictions. Bioaerosols generated by these facilities may present a serious and widespread occupational and non-occupational exposure risk to nearby residents, particularly the elderly and children. An understanding of the characteristics and exposure risks of bioaerosols produced during decentralized sewage treatment is lacking. We compared bioaerosol emission characteristics and potential exposure risks under four decentralized sewage discharge methods and treatment models: small container collection (SCC), open-channel discharge (OCD), single household/combined treatment (SHCT), and centralized treatment (CT) in northwest China. The OCD mode had the highest bioaerosol production, whereas the CT mode had the lowest. The OCD model contained the most pathogenic bacterial species, up to 43 species, including Sphingomonas, Pseudomonas, Cladosporium, and Alternaria. Risk assessments indicated bioaerosol exposure was lower in the models with sewage treatment (SHCT and CT) than in those without (SCC and OCD). Different populations exhibited large variations in potential risks owing to differences in time spent indoors and outdoors. The highest risk was observed in males exposed to the SCC model. This study provides a theoretical basis and theories for the future joint prevention and control of the bioaerosol exposure risk from decentralized sewage treatment.
Collapse
Affiliation(s)
- Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xuezheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zipeng Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Chenlei Lyu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Yilin Li
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Xu Jin
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Yuxiang Zhang
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Itarte M, Calvo M, Martínez-Frago L, Mejías-Molina C, Martínez-Puchol S, Girones R, Medema G, Bofill-Mas S, Rusiñol M. Assessing environmental exposure to viruses in wastewater treatment plant and swine farm scenarios with next-generation sequencing and occupational risk approaches. Int J Hyg Environ Health 2024; 259:114360. [PMID: 38555823 DOI: 10.1016/j.ijheh.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Occupational exposure to pathogens can pose health risks. This study investigates the viral exposure of workers in a wastewater treatment plant (WWTP) and a swine farm by analyzing aerosol and surfaces samples. Viral contamination was evaluated using quantitative polymerase chain reaction (qPCR) assays, and target enrichment sequencing (TES) was performed to identify the vertebrate viruses to which workers might be exposed. Additionally, Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate the occupational risk associated with viral exposure for WWTP workers, choosing Human Adenovirus (HAdV) as the reference pathogen. In the swine farm, QMRA was performed as an extrapolation, considering a hypothetical zoonotic virus with characteristics similar to Porcine Adenovirus (PAdV). The modelled exposure routes included aerosol inhalation and oral ingestion through contaminated surfaces and hand-to-mouth contact. HAdV and PAdV were widespread viruses in the WWTP and the swine farm, respectively, by qPCR assays. TES identified human and other vertebrate viruses WWTP samples, including viruses from families such as Adenoviridae, Circoviridae, Orthoherpesviridae, Papillomaviridae, and Parvoviridae. In the swine farm, most of the identified vertebrate viruses were porcine viruses belonging to Adenoviridae, Astroviridae, Circoviridae, Herpesviridae, Papillomaviridae, Parvoviridae, Picornaviridae, and Retroviridae. QMRA analysis revealed noteworthy risks of viral infections for WWTP workers if safety measures are not taken. The probability of illness due to HAdV inhalation was higher in summer compared to winter, while the greatest risk from oral ingestion was observed in workspaces during winter. Swine farm QMRA simulation suggested a potential occupational risk in the case of exposure to a hypothetical zoonotic virus. This study provides valuable insights into WWTP and swine farm worker's occupational exposure to human and other vertebrate viruses. QMRA and NGS analyses conducted in this study will assist managers in making evidence-based decisions, facilitating the implementation of protection measures, and risk mitigation practices for workers.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lola Martínez-Frago
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
6
|
Stobnicka-Kupiec A, Gołofit-Szymczak M, Cyprowski M, Górny RL. Monitoring of enteropathogenic Gram-negative bacteria in wastewater treatment plants: a multimethod approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37229-37244. [PMID: 38764088 PMCID: PMC11182840 DOI: 10.1007/s11356-024-33675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The wastewater treatment processes are associated with the emission of microbial aerosols, including enteropathogenic bacteria. Their presence in this work environment poses a real threat to the health of employees, both through the possibility of direct inhalation of the contaminated air and indirectly through the pollution of all types of surfaces with such bioaerosol particles. This study aimed to investigate the prevalence of enteropathogenic bacteria in the air, on surfaces, and in wastewater samples collected in four wastewater treatment plants (WWTPs). The effectiveness of conventional culture-biochemical, as well as spectrometric and molecular methods for the rapid detection of enteropathogenic bacteria at workstations related to particular stages of wastewater processing, was also evaluated. Bioaerosol, surface swab, and influent and effluent samples were collected from wastewater plants employing mechanical-biological treatment technologies. The air samples were collected using MAS-100 NT impactor placed at a height of 1.5 m above the floor or ground, simulating aspiration from the human breathing zone. Surface samples were collected with sterile swabs from different surfaces (valves, handles, handrails, and coveyor belts) at workplaces. The raw influent and treated effluent wastewater samples were aseptically collected using sterile bottles. The identification of bacterial entheropathogens was simultaneously conducted using a culture-based method supplemented with biochemical (API) tests, mass-spectrometry (MALDI TOF MS), and molecular (multiplex real-time PCR) methods. This study confirmed the common presence of bacterial pathogens (including enteropathogenic and enterotoxigenic Escherichia coli, Salmonella spp., Campylobacter spp., and Yersinia enterocolitica) in all air, surface, and wastewater samples at studied workplaces. Higher concentrations of enteropathogenic bacteria were observed in the air and on surfaces at workplaces where treatment processes were not hermetized. The results of this study underline that identification of enteropathogenic bacteria in WWTPs is of great importance for the correct risk assessment at workplaces. From the analytical point of view, the control of enteropathogenic bacterial air and surface pollution using rapid multiplex-PCR method should be routinely performed as a part of hygienic quality assessment in WWTPs.
Collapse
Affiliation(s)
- Agata Stobnicka-Kupiec
- Central Institute for Labour Protection-National Research Institute, Czerniakowska Street 16, Warsaw, Poland.
| | - Małgorzata Gołofit-Szymczak
- Central Institute for Labour Protection-National Research Institute, Czerniakowska Street 16, Warsaw, Poland
| | - Marcin Cyprowski
- Central Institute for Labour Protection-National Research Institute, Czerniakowska Street 16, Warsaw, Poland
| | - Rafał L Górny
- Central Institute for Labour Protection-National Research Institute, Czerniakowska Street 16, Warsaw, Poland
| |
Collapse
|
7
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Zang N, Tian H, Kang X, Liu J. Bioaerosolization behaviour of potential pathogenic microorganisms from wastewater treatment plants: Occurrence profile, social function and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171300. [PMID: 38423328 DOI: 10.1016/j.scitotenv.2024.171300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Wastewater treatment plants (WWTPs) are the leading sources of potential pathogenic bioaerosol that cause non-negligible health risks. However, bioaerosolization behaviour of potential pathogenic microorganisms (PPMs) migrating from wastewater to the atmosphere is still unclear. This study investigated the occurrence profile of PPMs in wastewater, sludge and bioaerosol, then analyzed bioaerosolization level, impact factors and social function. Staphylococcus aureus was selected as the target due to its pathogenicity, and the health risks of workers, engineers and researchers wearing various masks (N90, N95 and medical masks) were evaluated. The results showed that there were 38 and 64 PPMs in bioaerosol from plant A and B. Streptomyces in plant A (average bioaerosolization index, BI= 237.71) and Acinetobacter in plant B (average BI = 505.88) were more likely to migrate from wastewater to the atmosphere forming bioaerosol. Environmental factors (relative humidity, wind speed and temperature) affected both BI and microbial species of PPMs in different ways. PPMs related to fermentation, aerobic chemoheterotrophy, and chemoheterotrophy are the most abundant. Meanwhile microbial networks from plants A and B showed that PPMs were well-connected. Emission level of Staphylococcus aureus bioaerosol can reach 980 ± 309.19 CFU/m3 in plant A and 715.55 ± 44.17 CFU/m3 in plant B. For three exposure population, disease burden (DB) and annual probability infection (Py) of Staphylococcus aureus bioaerosol in two plants were both higher than the U.S.EPA benchmark (10-4 DALYs pppy). All three masks (N90,N95 and medical masks) can decrease Py and DB by at least one order of magnitude. This study illustrated the bioaerosolization behaviour of PPMs comprehensively, which provides a scientific basis for exposure risk prevention and control.
Collapse
Affiliation(s)
- Nana Zang
- Beijing University of Civil Engineering and Architecture, Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing 100044, China; Beijing University of Civil Engineering and Architecture, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing 100044, China
| | - Hongyu Tian
- Beijing University of Civil Engineering and Architecture, Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing 100044, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Beijing University of Civil Engineering and Architecture, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing 100044, China
| | - Xinyue Kang
- Beijing University of Civil Engineering and Architecture, Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing 100044, China; Beijing University of Civil Engineering and Architecture, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing 100044, China
| | - Jianwei Liu
- Beijing University of Civil Engineering and Architecture, Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing 100044, China; Beijing University of Civil Engineering and Architecture, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing 100044, China.
| |
Collapse
|
9
|
Yang T, Wang X, Jiang L, Sui X, Bi X, Jiang B, Zhang Z, Li X. Antibiotic resistance genes associated with size-segregated bioaerosols from wastewater treatment plants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123169. [PMID: 38128715 DOI: 10.1016/j.envpol.2023.123169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The antibiotic-resistant pollution in size-segregated bioaerosols from wastewater treatment plants (WWTPs) is of increasing concern due to its public health risks, but an elaborate review is still lacking. This work overviewed the profile, mobility, pathogenic hosts, source, and risks of antibiotic resistance genes (ARGs) in size-segregated bioaerosols from WWTPs. The dominant ARG type in size-segregated bioaerosols from WWTPs was multidrug resistance genes. Treatment units that equipped with mechanical facilities and aeration devices, such as grilles, grit chambers, biochemical reaction tanks, and sludge treatment units, were the primary sources of bioaerosol antibiotic resistome in WWTPs. Higher enrichment of antibiotic resistome in particulate matter with an aerodynamic diameter of <2.5 μm, was found along the upwind-downwind-WWTPs gradient. Only a small portion of ARGs in inhalable bioaerosols from WWTPs were flanked by mobile genetic elements. The pathogens with multiple drug resistance had been found in size-segregated bioaerosols from WWTPs. Different ARGs or antibiotic resistant bacteria have different aerosolization potential associated with bioaerosols from various treatment processes. The validation of pathogenic antibiotic resistance bacteria, deeper investigation of ARG mobility, emission mechanism of antibiotic resistome, and development of treatment technologies, should be systematically considered in future.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, PR China.
| | - Xin Sui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Zhanpeng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xinlong Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
10
|
Chen M, Xing Y, Kong J, Wang D, Lu Y. Bubble manipulates the release of viral aerosols in aeration. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132534. [PMID: 37741211 DOI: 10.1016/j.jhazmat.2023.132534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Bubble bursting is a common phenomenon in many industrial and natural processes, plays an important role in mediating mass transfer across the water-air interface. But the interplay between bubbles and pathogens remains unclear and the mechanisms of virus aerosolization by the bubble properties have not been well studied. The main objective of this study was to evaluate the water-to-air transfer of viruses by bubbles of different sizes. Unlike the dominant view of smaller bubbles less bioaerosols, it was found that the smaller bubbles could generate significantly more viral aerosols regardless of the virus species (Phi6, MS2, PhiX174, and T7), when the Sauter mean bubble diameters were between 0.56 and 1.65 mm under constant aeration flow rate. The mechanism studies denied the possibilities of more aerosols or better dispersion of viruses in the aerosols generated by the smaller bubbles. However, deeper bubbling could transfer more viruses to the air for MS2, PhiX174, and T7. Their concentrations in aerosols were linearly related to the bubbling depth for these non-enveloped viruses, which demonstrates the bubble-scavenging effect as a main mechanism except for the enveloped virus Phi6. Whereas, unlike these three non-enveloped viruses, Phi6 could survive relatively better in the aerosols generated from the smaller bubbles, though the enhancement of aerosolization by the smaller bubbles was much larger than the improvement of survival. Other mechanisms still remain unknown for this enveloped virus. This study suggests that the attempt of decreasing the bubble size in aeration tank of the wastewater treatment plant might significantly increase the solubility of oxygen as well as the risk of viral aerosols.
Collapse
Affiliation(s)
- Menghao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yingying Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayang Kong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongbin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Yu X, Han Y, Liu J, Cao Y, Wang Y, Wang Z, Lyu J, Zhou Z, Yan Y, Zhang Y. Distribution characteristics and potential risks of bioaerosols during scattered farming. iScience 2023; 26:108378. [PMID: 38025774 PMCID: PMC10679821 DOI: 10.1016/j.isci.2023.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
In most economically underdeveloped areas, scattered farming and human‒livestock cohabitation are common. However, production of bioaerosols and their potential harm in these areas have not been previously researched. In this study, bioaerosol characteristics were analyzed in scattered farming areas in rural Northwest China. The highest bacteria, fungi, and Enterobacteria concentrations were 125609 ± 467 CFU/m³, 25175 ± 10305 CFU/m³, and 4167 ± 592 CFU/m³, respectively. Most bioaerosols had particle sizes >3.3 μm. A total of 71 bacterial genera and 16 fungal genera of potential pathogens were identified, including zoonotic potential pathogenic genera. Moreover, our findings showed that the scattered farming pattern of human‒animal cohabitation can affect the indoor air environment in the surrounding area, leading to chronic respiratory diseases in the occupants. Therefore, relevant government departments and farmers should enhance their awareness of bioaerosol risks and consider measures that may be taken to reduce them.
Collapse
Affiliation(s)
- Xuezheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zixuan Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Jinxin Lyu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ziyu Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ying Yan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yuxiang Zhang
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| |
Collapse
|
12
|
Liu J, Ai X, Lu C, Tian H. Comparison of bioaerosol release characteristics between windrow and trough sludge composting plants: Concentration distribution, community evolution, bioaerosolization behaviour, and exposure risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:164925. [PMID: 37392882 DOI: 10.1016/j.scitotenv.2023.164925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/20/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Windrow and trough composting are two mainstream composting methods, but the effect of composting methods on bioaerosol release from sludge composting plants is unclear. The study compared the bioaerosol release characteristics and exposure risks between the two composting methods. The results showed that the bacterial aerosol concentrations in the windrow composting plant ranged from 14,196 to 24,549 CFU/m3, while the fungal aerosol concentrations in the trough composting plant reached 5874 to 9284 CFU/m3; there were differences in the microbial community structures between the two sludge composting plants, and the composting method had a greater effect on bacterial community evolution than on fungal community evolution. The biochemical phase was the primary source of the bioaerosolization behaviour of the microbial bioaerosols. In the windrow and trough composting plants, the bacterial bioaerosolization index ranged from 1.00 to 999.28 and from 1.44 to 24.57, and the fungal bioaerosolization index ranged from 1.38 to 1.59 and from 0.34 to 7.72, respectively. Bacteria preferentially aerosolized mainly in the mesophilic stage, while the peak of the fungal bioaerosolization index appeared in the thermophilic stage. The total non-carcinogenic risks for bacterial aerosols were 3.4 and 2.4, while those for fungi were 1.0 and 3.2 in the trough and windrow sludge composting plants, respectively. Respiration is the main exposure pathway for bioaerosols. It is necessary to develop different bioaerosol protection measures for different sludge composting methods. The results of this study provided basic data and theoretical guidance for reducing the potential risk of bioaerosols in sludge composting plants.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Xinyu Ai
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Lu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hongyu Tian
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
13
|
Wang Y, Li Y, Li H, Zhou J, Wang T. Seasonal dissemination of antibiotic resistome from livestock farms to surrounding soil and air: Bacterial hosts and risks for human exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116638. [PMID: 36335698 DOI: 10.1016/j.jenvman.2022.116638] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Feces in livestock farms is a reservoir of antibiotic resistance genes (ARGs), which can disseminate into surrounding soil and air, bringing risks to human health. In this study, seasonal dissemination of ARGs in a livestock farm and implications for human exposure was explored. The experimental results showed that ARGs abundance basically ranked as feces > soil > air, and significant seasonal dependence was observed. The total ARGs in pig feces was relatively higher in autumn (109.7 copies g-1) and winter (1010.0 copies g-1), and lower in summer (105.0 copies g-1). Similarly, the lowest total ARGs in soil and air were also observed in summer. There were correlations among ARGs, integron intI1, and bacterial community. Total organic carbon was an important factor affecting ARGs distribution in the feces, and pH and moisture content significantly affected soil ARGs. The daily intakes of integron intI1 and ARGs from air were 10°.5 copies h-1 and 102.3 copies h-1 for human exposure, respectively. Pseudomonas was a potential pathogenic host of blaTEM-1 in feces, Pseudomonas and Acinetobacter were potential pathogenic hosts of multiple ARGs in soil, while ARGs in air did not migrate into pathogens.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hu Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
14
|
Kataki S, Patowary R, Chatterjee S, Vairale MG, Sharma S, Dwivedi SK, Kamboj DV. Bioaerosolization and pathogen transmission in wastewater treatment plants: Microbial composition, emission rate, factors affecting and control measures. CHEMOSPHERE 2022; 287:132180. [PMID: 34560498 DOI: 10.1016/j.chemosphere.2021.132180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/19/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Environmental consequences during wastewater management are vital and getting increased attention to interrupt any possible disease transmission pathways. Evidence of bioaerosolization of pathogen from wastewater to atmosphere during wastewater treatment have been highlighted previously. Understanding aerosol-based transmission in wastewater treatment plant (WWTP) is important because of the hazard it presents to the workers involved or to the population around and appears to be very significant during pandemic occurrences. This work aims to evaluate the possibility of pathogenic content of wastewater getting aerosolized during treatment by synthesizing the evidence on the potential aerosol generating treatment phases of WWTP, bioaerosol microbial composition, emission load and the factors affecting the bioaerosol formation. We also present some potential control strategies to take up in WWTP which may be useful to avoid such occurrences. Implementation of Aeration based strategies (use of diffused, submerged aeration, reduction in aeration rate), Improved ventilation based strategies (effective ventilation with adequate supply of clean air, minimizing air recirculation, supplementation with infection control measures such as filtration, irradiation), Improved protection based strategy (periodic monitoring of disinfection efficiency, pathogenic load of wastewater, improved operation policy) and other strategies (provision of buffer zone, wind shielding, water spraying on aerosol, screened surface of treatment units) could be very much relevant and significant in case of disease outbreak through aerosol formation in wastewater environment. Recent progress in sensor-based data collection, analysis, cloud-based storage, and early warning techniques in WWTP may help to reduce the risk of infectious transmission, especially during a pandemic situation.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Rupam Patowary
- Foundation for Environmental and Economic Development Services, Manipur, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sonika Sharma
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dev Vrat Kamboj
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| |
Collapse
|
15
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
16
|
Yang T, Jiang L, Cheng L, Zheng X, Bi X, Wang X, Zhou X. Characteristics of size-segregated aerosols emitted from an aerobic moving bed biofilm reactor at a full-scale wastewater treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125833. [PMID: 34492791 DOI: 10.1016/j.jhazmat.2021.125833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/21/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Aerosol emissions from wastewater treatment plants (WWTPs) have been associated with health reverberation but studies about characteristics of size-segregated aerosol particulate matter (PM) are scarce. In this study, the measurement of particulate number size distribution in the range of < 10 µm, and the collection of PM10-2.5, PM2.5-1.0 and PM1.0, were conducted from an aerobic moving bed biofilm reactor (MBBR) at a full-scale WWTP. MBBR aerosols showed a unimodal number size distribution, with the majority of particles (>94%) in the ultrafine size range (<100 nm). For toxic metal(loid)s or potential pathogens, significant differences were found within MBBR aerosols (PM10-2.5, PM2.5-1.0, and PM1.0), and also between MBBR aerosols and wastewater. Both wastewater and ambient air had important source contributions for MBBR aerosols. The compositions of toxic metal(loid)s in PM1.0, and the populations of potential bacterial or fungal pathogens in PM10-2.5 and PM2.5-1.0, were dominated by that from wastewater. Compared to PM10-2.5 and PM2.5-1.0, PM1.0 had the highest aerosolization potential for the toxic metal(loid)s of As, Cd, Co, Cr, Li, Mn, Ni, U, and Zn, and the genera of Acinetobacter, Pseudomonas and Fusarium. Due to the size-segregated specialty, targeted measures should be employed to reduce the health risks. CAPSULE: The compositions of toxic metal(loid)s in PM1.0, and the populations of potential pathogens in PM10-2.5 and PM2.5-1.0, were dominated by that from wastewater.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, PR China.
| | - Lihua Cheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xiaolin Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|