1
|
Kanattukara BV, Singh G, Sarkar P, Chopra A, Singh D, Mondal S, Kapur GS, Ramakumar SSV. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64994-65010. [PMID: 37074603 DOI: 10.1007/s11356-023-27044-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
With ever-increasing plastic waste, a robust and sustainable methodology to valorize the waste and tweak, the composition of the value added product is the need of the hour. The present study describes the effect of different heterogeneous catalyst systems on the yield, composition and nature of the pyrolysis oil produced from various waste polyolefins like high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and polypropylene (PP). The waste polyolefins were subjected to thermal as well as catalytic pyrolysis. Liquid, gas, and solid products were obtained during the pyrolysis. Various catalysts such as activated alumina (AAL), ZSM-5, FCC catalyst, and halloysite clay (HNT) were used. Usage of catalysts has reduced the temperature of the pyrolysis reaction from 470 to 450 °C with better liquid product yield. PP waste generated higher liquid yield compared to LLDPE and HDPE waste. The highest liquid yield of 70.0% was achieved with PP waste using AAL catalyst at 450 °C. The sulfur and chloride content was found to be < 10 and < 20 ppm respectively in all the pyrolysis liquid. Pyrolysis liquid products were analyzed using gas chromatography (GC), nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray fluorescence (XRF) spectroscopy, and gas chromatography coupled with mass spectrophotometry (GC-MS). The obtained liquid products consist of paraffin, naphthene, olefin and aromatic components. Catalyst regeneration experiments with AAL showed that the product distribution profile remains the same up to three cycles of regeneration.
Collapse
Affiliation(s)
| | - Gurmeet Singh
- Research & Development Centre, Indian Oil Corporation Ltd, Faridabad, 121007, Haryana, India
| | - Preetom Sarkar
- Research & Development Centre, Indian Oil Corporation Ltd, Faridabad, 121007, Haryana, India
| | - Anju Chopra
- Research & Development Centre, Indian Oil Corporation Ltd, Faridabad, 121007, Haryana, India
| | - Dheer Singh
- Research & Development Centre, Indian Oil Corporation Ltd, Faridabad, 121007, Haryana, India
| | - Sujit Mondal
- Research & Development Centre, Indian Oil Corporation Ltd, Faridabad, 121007, Haryana, India
| | - Gurpreet Singh Kapur
- Research & Development Centre, Indian Oil Corporation Ltd, Faridabad, 121007, Haryana, India
| | | |
Collapse
|
2
|
Experimental Investigation on Pyrolysis of Domestic Plastic Wastes for Fuel Grade Hydrocarbons. Processes (Basel) 2022. [DOI: 10.3390/pr11010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plastics usage is rising daily because of increased population, modernization, and industrialization, which produces a lot of plastic garbage. Due to their various chemical structures, long chain polymeric compositions, and thermal/decomposition behavior, it is challenging to recycle these plastic wastes into hydrocarbon fuels. In the current work, domestic plastic waste was pyrolyzed at 473 to 973 K in a fixed bed reactor and compared with the three virgin plastics LDPE (low-density polyethylene), HDPE (high-density polyethylene), and PP (polypropylene), as well as a mixture of the three (virgin mixed plastics). The pyrolysis results showed that maximum liquid hydrocarbons obtained from HDPE, LDPE, PP, mixed plastic, and domestic waste were 64.6 wt.%, 62.2 wt.%, 63.1 wt.%, 68.6 wt.%, and 64.6 wt.% at 773 K, respectively. The composition of liquid fuels was characterized using FTIR and GC-MS, which showed a wide spectrum of hydrocarbons in the C8–C20 range. Furthermore, liquid fuel characteristics such as density, viscosity, fire and flash point, pour point, and calorific value were examined using ASTM standards, and the results were found to be satisfactory. This study provides an innovative method for recycling waste plastics into economical hydrocarbon fuel for use in transportation.
Collapse
|
3
|
Ma J, Wu S, Liu J, Liu C, Ni S, Dai T, Wu X, Zhang Z, Qu J, Zhao H, Zhou D, Zhao X. Synergistic effects of nanoattapulgite and hydroxyapatite on vascularization and bone formation in a rabbit tibia bone defect model. Biomater Sci 2022; 10:4635-4655. [PMID: 35796642 DOI: 10.1039/d2bm00547f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However, the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study, polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently, in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties, with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously, the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.
Collapse
Affiliation(s)
- Jiayi Ma
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Siyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Jun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Ting Dai
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Xiaoyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Zhenyu Zhang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Jixin Qu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Hongbin Zhao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Dong Zhou
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.,School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|