1
|
Brown CW, Goldfine CE, Allan-Blitz LT, Erickson TB. Occupational, environmental, and toxicological health risks of mining metals for lithium-ion batteries: a narrative review of the Pubmed database. J Occup Med Toxicol 2024; 19:35. [PMID: 39192280 DOI: 10.1186/s12995-024-00433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The global market for lithium-ion batteries (LIBs) is growing exponentially, resulting in an increase in mining activities for the metals needed for manufacturing LIBs. Cobalt, lithium, manganese, and nickel are four of the metals most used in the construction of LIBs, and each has known toxicological risks associated with exposure. Mining for these metals poses potential human health risks via occupational and environmental exposures; however, there is a paucity of data surrounding the risks of increasing mining activity. The objective of this review was to characterize these risks. METHODS We conducted a review of the literature via a systematic search of the PubMed database on the health effects of mining for cobalt, lithium, manganese, and nickel. We included articles that (1) reported original research, (2) reported outcomes directly related to human health, (3) assessed exposure to mining for cobalt, lithium, manganese, or nickel, and (4) had an available English translation. We excluded all other articles. Our search identified 183 relevant articles. RESULTS Toxicological hazards were reported in 110 studies. Exposure to cobalt and nickel mining were most associated with respiratory toxicity, while exposure to manganese mining was most associated with neurologic toxicity. Notably, no articles were identified that assessed lithium toxicity associated with mining exposure. Traumatic hazards were reported in six studies. Three articles reported infectious disease hazards, while six studies reported effects on mental health. Several studies reported increased health risks in children compared to adults. CONCLUSIONS The results of this review suggest that occupational and environmental exposure to mining metals used in LIBs presents significant risks to human health that result in both acute and chronic toxicities. Further research is needed to better characterize these risks, particularly regarding lithium mining.
Collapse
Affiliation(s)
- Connor W Brown
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA.
| | - Charlotte E Goldfine
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
| | - Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy B Erickson
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Humanitarian Initiative, Boston, MA, USA
| |
Collapse
|
2
|
Ugulu I, Sahin I, Khan ZI, Akcicek E. Source Identification of Potentially Toxic Metals in Plants of Alpine Ecosystems of Mt. Madra by Positive Matrix Factorization. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:29. [PMID: 39152315 DOI: 10.1007/s00128-024-03941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
In this study, the concentrations of cadmium (Cd), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in plants sampled from Mt. Madra were investigated. Furthermore, the distribution characteristics and source identification of potentially toxic metals were investigated with the application of Positive Matrix Factorization (PMF) modelling. Samples of 26 different plant species were taken from Mt. Madra at elevations ranging from 177 to 1347 m using the multi-point sampling approach. The metal quantities measured by ICP-OES are the following sequences (mean ± SD) (mg/kg): Fe (974.96 ± 29.6) > Mn (111.81 ± 2.6) > Zn (27.28 ± 0.2) > Ni (2.17 ± 0.03) > Pb (0.77 ± 0.01) > Cd (0.12 ± 0.01). According to the plant samples in which the highest values were determined, the metals are as follows: Cd (Lathyrus laxiflorus, 0.401 mg/kg), Fe (Ajuga orientalis, 7621.207 mg/kg), Mn (Castanea sativa, 724.927 mg/kg), Ni (Prunella laciniata, 6.947 mg/kg), Pb (Crataegus stevenii, 3.955 mg/kg) and Zn (Prunella laciniata, 50.802 mg/kg). The results of the PMF model showed that Cd had an atmospheric transport factor originated and transported from industrial activites, Ni had a substrate factor, Fe, Mn, Pb and Zn were influenced by different anthropogenic factors.
Collapse
Affiliation(s)
- Ilker Ugulu
- Faculty of Education, Usak University, Usak, Turkey.
| | - Ibrahim Sahin
- Necatibey Faculty of Education, Balikesir University, Balikesir, Turkey
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Ekrem Akcicek
- Faculty of Education, Kutahya Dumlupinar University, Kutahya, Turkey
| |
Collapse
|
3
|
Ugulu I, Khan ZI, Mumtaz M, Ahmad K, Memona H, Akhtar S, Ashfaq A. Bioaccumulation and Health Risk Assessment of Potentially Toxic Metals in Citrus Limetta & Citrus Sinensis Irrigated by Wastewater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:5. [PMID: 38980525 DOI: 10.1007/s00128-024-03910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/20/2024] [Indexed: 07/10/2024]
Abstract
The aim of this study was to evaluate the impact of different irrigation sources on the levels of potentially toxic metals (Cd, Cr, Fe and Mn) in the edibles of citrus fruits (Citrus sinensis and Citrus limetta). The samples of fruit, soil and water were collected from two locations (fresh water irrigated-FW I and sewage water irrigated-SW II) within the city of Sargodha. The samples utilized in the study for metal analysis were prepared utilizing the wet acid digestion method. Metal determination was performed using Atomic Absorption Spectrometry (AAS). The potentially toxic metal values in the citrus samples ranged from 0.010 to 0.063, 0.015 to 0.293, 6.691 to 11.342 and 0.366 to 0.667 mg/kg for Cd, Cr, Fe and Mn, respectively. Analysis of Citrus limetta and Citrus sinensis indicated that the highest concentration of Cr, Fe and Mn is observed at the sewage water irrigation site (SW-II), whilst the minimum levels of Cr, Fe and Mn were observed at the fresh water irrigation site (FW-I). The results show that the levels of these metals in soil and fruit samples meet the acceptable guidelines outlined by USEPA and WHO. It was found that the metal pollution constitutes a potential threat to human health due to the HRI values for Cd, Cr, and Fe being above 1, despite the DIM values being below 1. Regular monitoring of vegetables irrigated with wastewater is highly recommended in order to minimise health risks to individuals.
Collapse
Affiliation(s)
- Ilker Ugulu
- Special Education Department, Usak University, Usak, Turkey.
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Mahrukh Mumtaz
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Hafsa Memona
- Department of Zoology, Queen Marry College, Lahore, Pakistan
| | - Shehzad Akhtar
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Asma Ashfaq
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
4
|
Ugulu I, Khan ZI, Bibi S, Ahmad K, Munir M, Memona H. Evaluation of the Effects of Wastewater Irrigation on Heavy Metal Accumulation in Vegetables and Human Health in the Cauliflower Example : Heavy Metal Accumulation in Cauliflower. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:44. [PMID: 38416161 DOI: 10.1007/s00128-024-03858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
The goals of the present research were to determine the heavy metal contents in the water-soil-cauliflower samples in industrial wastewater irrigated areas and to assess the health risks of these metals to the people. Metal analyses were carried out using the atomic absorption spectrophotometer equipped with a graphite furnace. The metal readings in the cauliflower specimens ranged from 1.153 to 1.389, 0.037 to 0.095, 0.61 to 0.892, 0.625 to 0.921, 1.165 to 2.399, 0.561 to 0.652, 0.565 to 0.585, 0.159 to 0.218 and 1.268 to 1.816 mg/kg for Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn and Mn, respectively. Statistics revealed that, with the exception of Pb and Co (p > 0.05), there was no statistically significant variation in the metal concentrations in the cauliflower samples according to the irrigation type. Pb, Ni, and Cr had HRI values below 1.0 and did not seem to be a hazard to human health, in contrast to Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn and Mn, which glanced to constitute a health risk. Regular monitoring of vegetables irrigated with wastewater is strongly advised to reduce health hazards to people.
Collapse
Affiliation(s)
- Ilker Ugulu
- Special Education Department, Usak University, Usak, Turkey.
| | - Zafar I Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Shehnaz Bibi
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Mudasra Munir
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Hafsa Memona
- Department of Botany, University of Sargodha, Sargodha, Pakistan
- Department of Zoology, Queen Mary College, Lahore, Pakistan
| |
Collapse
|
5
|
Ugulu I, Khan ZI, Ahmad K, Bashir H, Mehmood N, Zafar A. Arsenic Levels and Seasonal Variation in Pasture Soil, Forage and Horse Blood Plasma in Central Punjab, Pakistan. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:64. [PMID: 37904063 DOI: 10.1007/s00128-023-03819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
The present study aimed to determine the accumulation levels of arsenic in pasture soil, forage and animals. An atomic absorption spectrophotometer was used to determine the concentration of metals in the samples of soil, forage and blood plasma of horses. The level of arsenic ranged between 4.26 mg/kg (summer) and 4.66 mg/kg (winter) in soil samples and 2.67 mg/kg (summer) and 2.94 mg/kg (winter) in forage samples. In blood plasma samples, the mean arsenic (As) values varied between 1.38 and 1.52 mg/L. In the blood plasma samples, the mean As values varied between 1.38 and 1.52 mg/L. No statistically significant changes were observed for arsenic concentrations in plasma samples of horses for sampling seasons (p > 0.05). A positive correlation was observed for forage and blood plasma to a certain degree for arsenic but for other media, arsenic correlations were negative and insignificant. It is therefore suggested that regular monitoring of heavy metals in soils/plants/animals is essential to prevent excessive build-up of arsenic.
Collapse
Affiliation(s)
- Ilker Ugulu
- Faculty of Education, Usak University, Usak, Turkey.
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Humayun Bashir
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Naunain Mehmood
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Asma Zafar
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
6
|
Zainab N, Mehmood S, Amna Shafiq-Ur-Rehman, Munir A, Tanveer ZI, Nisa ZU, Imran M, Javed MT, Chaudhary HJ. Health risk assessment and bioaccumulation of potentially toxic metals from water, soil, and forages near coal mines of district Chakwal, Punjab, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5441-5466. [PMID: 37029254 DOI: 10.1007/s10653-023-01531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Water, forages, and soil contamination with potentially toxic metals (PTMs) through anthropogenic activities has become a significant environmental concern. It is crucial to find out the level of PTMs in water, soil, and forages near industrial areas. The PTMs enter the body of living organisms through these sources and have become a potential risk for humans and animals. Therefore, the present study aims at the health risk assessment of PTMs and their accumulation in soil, water, and forages of three tehsils (Kallar Kahar, Choa Saidan Shah, and Chakwal) in district Chakwal. Samples of wastewater, soil, and forages were collected from various sites of district Chakwal. PTMs detected in the present study were cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), and nickel (Ni), and their levels were measured through atomic absorption spectrophotometer (AAs GF95 graphite furnace auto sampler). Pollution load index (PLI), bio concentration factor (BCF), soil enrichment factors (EF), daily intake value (DIM), and health risk index (HRI) in sheep, cow, and buffalo were also analyzed. The results revealed that the mean concentration (mg/L) of Cd (0.72-0.91 mg/L), Cr (1.84-2.23 mg/L), Pb (0.95-3.22 mg/L), Co (0.74-2.93 mg/L), Cu (0.84-1.96 mg/L), and Ni (1.39-4.39 mg/L) in wastewater samples was higher than permissible limits set by WHO, NEQS, WWF, USEPA, and Pakistan in all three tehsils of district Chakwal. Similarly, in soil samples, concentrations of Cd (1.21-1.95 mg/kg), Cr (38.1-56.4 mg/kg), and Ni (28.3-55.9 mg/kg) were higher than their respective threshold values. The mean concentration of PTMs in forage samples (Parthenium hysterophorus, Mentha spicata, Justicia adhatoda, Calotropis procera, Xanthium strumarium, Amaranthaceae sp.) showed that maximum values of Cd (5.35-7.55 mg/kg), Cr (5.47-7.51 mg/kg), Pb (30-36 mg/kg), and Ni (12.6-57.5 mg/kg) were beyond their safe limit set for forages. PLI, BCF, and EF were > 1.0 for almost all the PTMs. The DIM and HRI for sheep were less than < 1.0 but for cows and buffalo were > 1.0. The current study showed that soil, water, and forages near coal mines area are contaminated with PTMs which enter the food chain and pose significant harm to humans and animals. In order to prevent their dangerous concentration in the food chain, regular assessment of PTMs present in soil, forages, irrigating water, and food is recommended.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, 61100, Pakistan
| | - Amna Shafiq-Ur-Rehman
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Department of Botany, University of Okara, Okara, 53900, Pakistan
- Department of Botany, Rawalpindi Women University, 6Th Road Satellite Town, Rawalpindi, Pakistan
| | - Adeela Munir
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | - Zaib Un Nisa
- Cotton Research Institute, Multan, Punjab, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | | |
Collapse
|
7
|
Nazir A, Wahid A. Foliar spray of stress protective chemicals alleviates cobalt toxicity by improving root antioxidant defense in maize (Zea mays). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81288-81302. [PMID: 37314561 DOI: 10.1007/s11356-023-28132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Cobalt (Co2+) is a beneficial microelement for plants but toxic to metabolism in higher amounts. This study determined the influence of sublethal Co2+ level (0.5 mM) on the growth of maize (Zea mays L.) hybrids; Hycorn 11 plus (Co2+ sensitive) and P-1429 (Co2+ tolerant) and its alleviation with foliar spray of pre-optimized levels of stress protective chemicals (SPCs), i.e., salicylic acid (SA, 0.5 mM), thiourea (TU, 1.0 mM), and ascorbic acid (AsA, 0.5 mM) applied at seedling, vegetative, and late vegetative stages. Plants were harvested at early vegetative, late vegetative, and silking stages. Co2+ stress caused a decrease in shoot and root length, dry weight, leaf area, and culm diameter, reduced the activities of enzymatic antioxidants and concentrations of AsA and soluble phenolics more in root than shoot, but P-1429 was more tolerant of Co2+ than Hycorn 11 plus. SPCs spray alleviated oxidative damage by enhancing the antioxidant activity, AsA and soluble phenolics, sulfate-S and nitrate-N contents, which were significantly increased in roots than in shoots; P-1429 displayed better response than Hycorn 11 plus. Principal component analysis and correlation matrix revealed the profound roles of SPCs spray in improving Co2+ resistance in root leading to robust growth of hybrids. AsA was highly promising in reducing Co2+ toxicity while vegetative and silking stages were more sensitive. Results revealed that after translocation to root, the foliar-applied SPCs had individualistic modes of action in mitigating Co2+ toxicity on roots. In crux, the metabolism and phloem transport of the SPCs from shoot to root are plausible mechanism for Co2+ tolerance in maize hybrids.
Collapse
Affiliation(s)
- Atia Nazir
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| |
Collapse
|
8
|
Ugulu I, Bibi S, Khan ZI, Ahmad K, Munir M, Malik IS. Does Industrial Wastewater Irrigation Cause Potentially Toxic Metal Contamination and Risk to Human Health? Sugar Industry Wastewater and Radish Examples. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:109. [PMID: 37301784 DOI: 10.1007/s00128-023-03748-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The goal of this study was to appraise potentially toxic metal contents in the soil-radish system in industrial wastewater irrigated areas. The analysis of metals in water, soil and radish samples were performed with spectrophotometric method. The potentially toxic metal values in the wastewater irrigated radish samples were ranged from 1.25 to 1.41, 0.02 to 0.10, 0.77 to 0.81, 0.72 to 0.80, 0.92 to 1.19, 0.69 to 0.78, 0.08 to 0.11, 1.64 to 1.67 and 0.49 to 0.63 mg/kg for Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn and Mn, respectively. The potentially toxic metal values in the soil and radish samples irrigated with wastewater were lower than the maximum allowable limits, except for Cd. The results of the Health Risk Index evaluation conducted in this study also showed that the accumulations of Co, Cu, Fe, Mn, Cr, and Zn, especially Cd, pose a health risk in terms of consumption.
Collapse
Affiliation(s)
- Ilker Ugulu
- Special Education Department, Usak University, Usak, Turkey.
| | - Shehnaz Bibi
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Zafar I Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Mudasra Munir
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Ifra S Malik
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
9
|
Saouli A, Adjroud O, Ncir M, Bachir A, El Feki A. Attenuating effects of selenium and zinc against hexavalent chromium-induced oxidative stress, hormonal instability, and placenta damage in preimplanted rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60050-60079. [PMID: 37017835 DOI: 10.1007/s11356-023-26700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
As a toxic metal, hexavalent chromium (CrVI) has effects on both the reproductive and endocrine systems. This study aimed to evaluate the protective effects of selenium (Se) and zinc (Zn) against the toxicity of chromium on the placenta in pregnant Wistar albino rats. Thirty pregnant Wistar rats were divided into control and four treated groups, receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg body weight (bw)) alone, or in association with Se (0.3 mg/kg bw), ZnCl2 (20 mg/kg bw), or both of them simultaneously. Plasma steroid hormones, placenta histoarchitecture, oxidative stress profile, and developmental parameters were investigated. These results showed that K2Cr2O7 exposure induced a significant increase in the levels of both plasma estradiol (E2) and placenta malondialdehyde (MDA), the number of fetal resorptions, and percent of post-implantation loss. On the other hand, K2Cr2O7 significantly reduced developmental parameters, maternal body and placenta weight, and plasma progesterone (P) and chorionic gonadotropin hormone (β HCG) levels. However, K2Cr2O7 significantly decreased the placenta activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), and nonprotein sulfhydryl (NPSH). These changes have been reinforced by histopathological evaluation of the placenta. Se and/or ZnCl2 supplementation provoked a significant improvement in most indices. These results suggest that the co-treatment with Se or ZnCl2 strongly opposes the placenta cytotoxicity induced by K2Cr2O7 through its antioxidant action.
Collapse
Affiliation(s)
- Asma Saouli
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria.
| | - Ounassa Adjroud
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria
| | - Marwa Ncir
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Achouak Bachir
- Anatomy and Pathology Laboratory, EHS Salim Zemirli, 16200, El Harrach, Algeria
| | - Abdelfattah El Feki
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
10
|
Azevedo R, Oliveira AR, Almeida A, Gomes LR. Determination by ICP-MS of Essential and Toxic Trace Elements in Gums and Carrageenans Used as Food Additives Commercially Available in the Portuguese Market. Foods 2023; 12:1408. [PMID: 37048229 PMCID: PMC10093682 DOI: 10.3390/foods12071408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Gums and carrageenans are food additives widely used in food preparations to improve texture and as viscosifiers. Although they are typically added in small amounts, nowadays people tend to use more and more pre-prepared food. In this work, the content of a wide panel of trace elements in commercial products were analyzed. Carrageenans and gums (n = 13) were purchased in the Portuguese market and were from European suppliers. Samples were solubilized by closed-vessel microwave-assisted acid digestion and analyzed by ICP-MS. Globally, the content of essential trace elements decreased in the following order: Fe (on average, on the order of several tens of µg/g) > Mn > Zn > Cr > Cu > Co > Se > Mo (typically < 0.1 µg/g), while the content of non-essential/toxic trace elements decreased in the following order: Al > Sr > Rb > As > Li > Cd > Pb > Hg. The consumption of these food additives can significantly contribute to the daily requirements of some essential trace elements, namely Cr and Mo. The toxic trace elements Cd, As, Pb, and Hg were below the EU regulatory limits in all analyzed samples. Additional research is needed to define the potential risk of introducing toxic trace elements into food products through the use of these additives.
Collapse
Affiliation(s)
- Rui Azevedo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Lígia Rebelo Gomes
- FP-I3ID, University Fernando Pessoa, 4249-004 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Wang CC, Zhang QC, Kang SG, Li MY, Zhang MY, Xu WM, Xiang P, Ma LQ. Heavy metal(loid)s in agricultural soil from main grain production regions of China: Bioaccessibility and health risks to humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159819. [PMID: 36334671 DOI: 10.1016/j.scitotenv.2022.159819] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Unintentional ingestion of metal-contaminated soils may pose a great threat to human health. To accurately evaluate the health risks of heavy metal(loid)s in soils, their bioaccessibility has been widely determined by in vitro assays and increasingly employed to optimize the assessment parameters. Given that, using meta-analysis, we analyzed the literature on farmland heavy metal(loid)s (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn) in Chinese main grain production regions, and collected their total and bioaccessibility data to accurately assess their human health risks. Monte Carlo simulation was used to reduce the uncertainty in metal concentration, intake rate, toxicity coefficient, and body weight. We found that the mean concentration (0.47 mg/kg) and geological accumulation index (Igeo, 0-5.24) of Cd were the priority position of controlling metals. Moreover, children are more vulnerable to carcinogenic risks than adults. Soil mineralogy, physicochemical properties, Fe, and the types of in vitro assays are the influencing factors of bioaccessibility discrepancy. Furthermore, appropriate bioaccessibility determination methods can be adapted according to the differences in ecological receptors for the risk assessment, like developing a "personalized assessment" scheme for polluted farmland soil management. Collectively, bioaccessibility-based models may provide an accurate and effective approach to human health risk assessment.
Collapse
Affiliation(s)
- Cheng-Chen Wang
- Yunnan Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qiao-Chu Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Shao-Guo Kang
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd., National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Meng-Ying Li
- Yunnan Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Meng-Yan Zhang
- Yunnan Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Wu-Mei Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Ping Xiang
- Yunnan Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Ghazzal M, Hussain MI, Khan ZI, Ahmad K, Munir M, Paray BA, Al-Sadoon MK. Bubalus bubalis Blood as Biological Tool to Track Impacts from Cobalt: Bioaccumulation and Health Risks Perspectives from a Water-Soil-Forage-Livestock Ecosystem. Biol Trace Elem Res 2023; 201:706-719. [PMID: 35334063 DOI: 10.1007/s12011-022-03206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/13/2022] [Indexed: 01/21/2023]
Abstract
Cobalt (Co) bioaccumulation, contamination, and toxicity in the soil environment, plant growth, and cattles' health are becoming a severe matter that can cause unembellished consequences in environmental safety and human health. The present research was conducted for the assurance of cobalt (Co) amassing in three forage plant species (Zea mays, Sorghum bicolor, Trifolium alaxandrium), from four ecological sites, and sewage water and in buffaloes blood was investigated. The analysis of variance showed significant differences for Co concentration in the soil and sewage water collected from all ecological sites. Meanwhile, summer and winter seasons and forage ecotypes significantly influenced the quantity of Co. The forage pastures also vary significantly in the concentration of Co in the above-ground parts. The highest Co level was present in Trifolium alaxandrium at ecological site-5. Cobalt taken from wastewater had a higher concentration in Trifolium alaxandrium during the winter. The samples which are collected from site-V and site-IV have the maximum concentration of Co because these areas receive highly contaminated water for irrigation. Cobalt tends to be bioaccumulated in the food chain and can cause serious problems in humans and animals. Bioaccumulation of cobalt in collected samples could be accredited to anthropogenic activities. Pollution load index values for all samples fell in the range below 1. The health risk index indicated the probability of health damage caused by the ingestion of contaminated fodder. An increase of Co concentration in soil, fodder, and blood owing to wastewater irrigation to crops was indicated as an outcome of this investigation. The results indicate that the Co toxicity in forage crops is attributed to Co bioaccumulation, transfer, and pollution load in the soil-water-cattle triangle. Efforts should be extended to avoid contamination of the food chain via Co-rich sewage water. Other nonconventional water resources should be used for forage irrigation.
Collapse
Affiliation(s)
- Maria Ghazzal
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - M Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidade de Vigo, 36310, Vigo, Spain.
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Mudasra Munir
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
13
|
Ugulu I, Bibi S, Khan ZI, Ahmad K, Munir M, Malik IS. Potentially Toxic Metal Accumulation in Spinach (Spinacia oleracea L.) Irrigated with Industrial Wastewater and Health Risk Assessment from Consumption. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1117-1125. [PMID: 35984458 DOI: 10.1007/s00128-022-03606-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine the potentially toxic metal contents in soil and spinach samples in areas irrigated with industrial wastewater and to evaluate the potentially toxic metal accumulation in spinach samples according to pollution indices. Water, soil and spinach samples were analysed using atomic absorption spectrophotometer (Perkin-Elmer AAS-300). In this study, it was determined that the potentially toxic metal values in the spinach samples irrigated with groundwater and sugar industry wastewater varied between 1.59 and 1.84, 0.22-0.68, 0.56-1.14, 1.41-1.56, 1.62-3.23, 0.57-1.02, 0.86-1.33, 0.20-0.32 and 0.35-2.10 mg/kg for Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn and Mn, respectively. It was concluded that the difference between the metal values in the spinach samples according to the irrigation sources was statistically significant, except for Cu and Pb (p > 0.05). According to the results of this study, there is no health risk for Pb, Co and Cr with HRI values below 1.0, while there is a risk for Cd, Cu, Fe, Ni, Mn and Zn. The much higher HRI values of Cd than 1 (196.8 and 169.6) suggested that this metal is likely to cause significant health problems in the region.
Collapse
Affiliation(s)
- Ilker Ugulu
- Faculty of Education, Usak University, Usak, Turkey.
| | - Shehnaz Bibi
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Zafar I Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Mudasra Munir
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Ifra S Malik
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
14
|
Treated livestock wastewater influence on soil quality and possibilities of crop irrigation. Saudi J Biol Sci 2022; 29:2766-2771. [PMID: 35531162 PMCID: PMC9072876 DOI: 10.1016/j.sjbs.2021.12.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
This work aims to investigate how livestock wastewater irrigation affects the quality and agricultural potential of soil. The experiments took place in 2019 on a research station with an area of 10 ha (Moscow region, Russian Federation), divided into two even sites of 5 ha (control, experimental). Eleven germination experiments were carried out to determine the influence of livestock wastewater irrigation on radish seeds (1 – control; 10 – irrigation with liquid and solid phases of wastewater samples mixed with pure water). The experimental and control plots appeared to differ in terms of the bulk density of soil. Changes occurred in all horizons (p ≤ 0.05) but a soil layer with a depth of 0.2–0.4 m. Soil horizons in the experiment plots all exhibited lower porosity (p ≤ 0.05) except for the topsoil, and the water capacity was higher in the topsoil (p ≤ 0.05) and near-surface layer (p ≤ 0.05). The experiment showed higher concentrations of hummus (p ≤ 0.01) and phosphorus (p ≤ 0.01). As for nitrogen, significant changes only occurred in the topsoil (p ≤ 0.01). In the germination experiments, more than 90% of radish seeds germinated. Besides, their root length was higher compared to the control (p ≤ 0.05). The results of the study suggest that livestock wastewater can benefit crop cultivation after preliminary treatment. Finally, the experiments revealed a reduced soil salt accumulation.
Collapse
|
15
|
Ahmad T, Nazar S, Ahmad K, Khan ZI, Bashir H, Ashfaq A, Munir M, Munir Z, Hussain K, Alkahtani J, Elshikh MS, Nadeem M, Malik IS. Monitoring of copper accumulation in water, soil, forage, and cows impacted by heavy automobiles in Sargodha, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29110-29116. [PMID: 33550557 DOI: 10.1007/s11356-021-12770-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The instant endeavor was undertaken to monitor copper (Cu) contents in water, soil, forage, and cow's blood impacted by heavy automobiles in Sahiwal town of district Sargodha, Pakistan. The samples were collected in triplicates with a total of 120 soil and water samples with corresponding forage samples. For the analysis of metal concentration in cows, 60 blood samples were collected from the cows feeding on these forages on selected sites. Metal contents were analyzed by atomic absorption spectrophotometry. The results showed that water samples contained mean values of Cu concentration ranged from 1.01 to 0.444 mg/kg at all sites. It was maximum at site 3 and minimum at site 6. The soil samples of all the forage fields showed Cu mean values concentration ranged from 1.94 to 0.286 mg/kg at all sites. It was maximum in Trifolium alexandrinum grown field at site 2, and minimum in Avena sativa at site 2. All the forage samples showed the mean value of Cu concentration ranged from 0.151 to 1.86 mg/kg at all sites. The concentration of Cu was maximum in Zea mays grown at site 5 and minimum in Trifolium alexandrinum at site 4. The cow blood samples showed the mean concentration of Cu ranged from 1.368 to 0.53 mg/kg at all sites. It was maximum at site 2 and minimum at site 6. Owing to the results of pollution index and transfer factors, metal content was found to be in permissible range in forages as well as animal samples.
Collapse
Affiliation(s)
- Tasneem Ahmad
- Pakki Thatti Research and Development Farm, Toba Tek Singh, 36050, Pakistan
| | - Sonaina Nazar
- Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Humayun Bashir
- Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Asma Ashfaq
- Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Mudasra Munir
- Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zunaira Munir
- Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Khadim Hussain
- Department of Botany, Govt. MAO College, Lahore, Pakistan
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Ifra Saleem Malik
- Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| |
Collapse
|