1
|
Wang Y, Tang X, Gong C, Huang C, Wu X, Li F, Zhou Z. Effect of controlling nitrogen and phosphorus release from sediment using a biological aluminum-based P-inactivation agent (BA-PIA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86425-86436. [PMID: 37405603 DOI: 10.1007/s11356-023-28521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
A biological aluminum-based P-inactivation agent (BA-PIA) has been developed and demonstrated to effectively remove nitrogen and phosphorus; however, whether it can control the release of nitrogen and phosphorus in sediment still needs study. This study aimed to examine the effect of BA-PIA on controlling sediment nitrogen and phosphorus release. BA-PIA was prepared by artificial aeration. The use of BA-PIA in controlling nitrogen and phosphorus release was studied using water and sediment from a landscape lake in static simulation experiments. The sediment microbial community was analyzed using high-throughput sequencing. Static simulation showed that the reduction rates of total nitrogen (TN) and total phosphorus (TP) by BA-PIA were 66.8 ± 1.46% and 96.0 ± 0.98%, respectively. In addition, capping of BA-PIA promotes the conversion of easily released nitrogen (free nitrogen) in the sediment to stable nitrogen (acid-hydrolyzable nitrogen). The content of weakly adsorbed phosphorus and iron-adsorbed phosphorus in the sediment was reduced. The relative abundance of nitrifying bacteria, denitrifying bacteria, and microorganisms carrying phosphatase genes (such as Actinobacteria) in the sediment increased by 109.78%. The capping of BA-PIA not only effectively removed the nitrogen and phosphorus in water but greatly reduced the risk of nitrogen and phosphorus release from sediment. BA-PIA was able to make up for the deficiency of the aluminum-based phosphorus-locking agent (Al-PIA) that only removes phosphorus, giving it improved application prospects.
Collapse
Affiliation(s)
- Yichao Wang
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Jimei District, Xiamen, 361021, China
| | - Xueping Tang
- Xiamen Institute of Environmental Science, Xiamen, 361021, China
| | - Chunming Gong
- Xiamen Institute of Environmental Science, Xiamen, 361021, China
| | - Chen Huang
- Xiamen Environmental Monitoring Station, Xiamen, 361021, China
| | - Xiaohai Wu
- CCCC First Highway Xiamen Engineering Co., Ltd, Xiamen, 361021, China
| | - Fei Li
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Jimei District, Xiamen, 361021, China
| | - Zhenming Zhou
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Jimei District, Xiamen, 361021, China.
| |
Collapse
|
2
|
Wang Y, Yuan S, Liu S, Li F, Zhou Z. Removal efficacy and mechanism of nitrogen and phosphorus by biological aluminum-based P-inactivation agent (BA-PIA). J Environ Sci (China) 2023; 127:187-196. [PMID: 36522052 DOI: 10.1016/j.jes.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/17/2023]
Abstract
In this study, aluminum-based P-inactivation agent (Al-PIA) was used as a high-efficiency microbial carrier, and the biological Al-PIA (BA-PIA) was prepared by artificial aeration. Laboratory static experiments were conducted to study the effect of BA-PIA on reducing nitrogen and phosphorus contents in water. Physicochemical characterization and isotope tracing method were applied to analyze the removal mechanism of nitrogen and phosphorus. High-throughput techniques were used to analyze the characteristic bacterial genus in the BA-PIA system. The nitrogen and phosphorus removal experiment was conducted for 30 days, and the removal rates of NH4+-N, TN and TP by BA-PIA were 81.87%, 66.08% and 87.97%, respectively. The nitrogen removal pathways of BA-PIA were as follows: the nitrification reaction accounted for 59.0% (of which denitrification reaction accounted for 56.4%), microbial assimilation accounted for 18.1%, and the unreacted part accounted for 22.9%. The characteristic bacteria in the BA-PIA system were Streptomyces, Nocardioides, Saccharopolyspora, Nitrosomonas, and Marinobacter. The loading of microorganisms only changed the surface physical properties of Al-PIA (such as specific surface area, pore volume and pore size), without changing its surface chemical properties. The removal mechanism of nitrogen by BA-PIA is the conversion of NH4+-N into NO2--N and NO3--N by nitrifying bacteria, which are then reduced to nitrogen-containing gas by aerobic denitrifying bacteria. The phosphorus removal mechanism is that metal compounds (such as Al) on the surface of BA-PIA fix phosphorus through chemisorption processes, such as ligand exchange. Therefore, BA-PIA overcomes the deficiency of Al-PIA with only phosphorus removal ability, and has better application prospects.
Collapse
Affiliation(s)
- Yichao Wang
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuai Yuan
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Shupo Liu
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Fei Li
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhenming Zhou
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
3
|
Tang X, Jin H, Zou J, Liu S, Li F, Zhou Z. Activation of peroxymonosulfate by catalysts derived from water treatment plant sludge for the simultaneous removal of Disperse Blue 56 and phosphates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35683-35697. [PMID: 36538231 DOI: 10.1007/s11356-022-24792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this study, calcined water treatment plant sludge (C-WTPS) was used as a catalyst for peroxymonosulfate (PMS) activation to simultaneously remove Disperse Blue 56 (DB56) and phosphates. Firstly, the performance of the C-WTPS/PMS system was examined for the degradation of DB56. The results showed that 96.7% of DB56 (400 mg L-1) was removed within 60 min in the presence of 4.8 g L-1 PMS and 0.8 g L-1 C-WTPS at pH 3 and 50 °C. Hydroxyl radicals (·OH), sulfate radicals (SO4·-), and singlet oxygen (1O2) were generated during the oxidation process, and 1O2 was the main active species. The relatively high surface area, proper Fe content, and abundant ketone groups on the catalyst surface were responsible for PMS activation. Furthermore, the possible degradation pathways of DB56 were proposed based on the gas chromatography-mass spectrometry (GC-MS) results. Secondly, the simultaneous removal of DB56 and phosphates by the C-WTPS/PMS system was investigated. Due to the different removal mechanisms, the effects of the initial phosphate concentration and water matrix species on the removal of DB56 and phosphates showed different trends. Reusability tests results showed that C-WTPS had relatively high stability. In addition, the C-WTPS/PMS system exhibited a high decolorization ratio and phosphate removal efficiency in real wastewater tests. This article offers a value-added approach for reusing WTPS as a catalyst for treating organic contaminants and phosphates.
Collapse
Affiliation(s)
- Xing Tang
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Hongyi Jin
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Shupo Liu
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Fei Li
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Zhenming Zhou
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China.
| |
Collapse
|
4
|
Control of Endogenous Phosphorus Release at the Sediment–Water Interface by Lanthanum-Modified Fly Ash. COATINGS 2022. [DOI: 10.3390/coatings12060719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study optimizes the modification and granulation of fly ash to make it more stable at the sediment–water interface. Through laboratory simulations, the modified fly ash pellets were optimally granulated to cover the sediment–water interface, and its control effect and mechanism were evaluated. The results showed that the phosphorus adsorption effect of lanthanum-modified fly ash was 34% and 40% higher compared with those of acid-modified and alkali-modified fly ash, respectively, with the phosphorus adsorption effect reaching 85%. The best dosing ratio was about 0.3 g/L. Adsorption was affected by pH and was more effective under weak alkalinity, close to the Langmuir adsorption model, which was consistent with the unimolecular layer adsorption characteristics and the presence of chemisorption and physical adsorption. The saturation adsorption amount of phosphate by lanthanum-modified fly ash was 8.89 mg/g. The optimized granulation conditions for lanthanum-modified fly ash pellets were a fly ash/montmorillonite ratio of 7:3, a roasting temperature of 900 °C, a roasting time of 4 h, and a particle size of 3 mm. After 20 days, the orthophosphate removal rate was more than 60% higher than that of the control group, with a total phosphorus removal rate of 43%. After covering for 60 days, active phosphorus in the surface layer of the sediment was gradually transformed into a stable phosphorus form, with calcium phosphorus accounting for 70% of the total inorganic phosphorus. The ability of the sediment to release phosphorus to the overlying water body was also significantly weakened. Meanwhile, the total phosphorus removal rate in the overlying water at the sediment–water interface reached more than 40%, and orthophosphate removal reached more than 60%, indicating an obvious phosphorus control effect. Transmission electron microscopy analysis showed that lanthanum was present at locations enriched with elemental phosphorus and was adsorbed onto the material surface. Therefore, lanthanum-modified fly ash pellets are a promising in situ phosphorus control agent with good endogenous phosphorus pollution control abilities in eutrophic water bodies.
Collapse
|
5
|
Wang Y, Li S, Liu S, Li F, Zhou Z. Three kinds of active thin-layer capping materials for reducing the phosphorus load in eutrophic water body: comparison in dynamic experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16427-16435. [PMID: 34651265 DOI: 10.1007/s11356-021-16981-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
In this article, dynamic simulation experiments have studied the effects of three capping materials, quartz sand (QS), aluminum-based phosphorus-locking agent (Al-PIA), and lanthanum-modified bentonite (LMB) in reducing phosphorus load in eutrophic water bodies. The changes of various forms of phosphorus in Al-PIA and sediment before and after the test were analyzed, and the mechanism of phosphorus migration and transformation in different capping systems was described. The dynamic simulation test lasted 95 days. The results showed that when the initial concentration of total phosphorus (TP) was 3.55 mg/L, the capping strength was 2 kg/m2 and the hydraulic retention time of water circulation was 0.5 days, indicating that the average reduction rates of TP by LMB, Al-PIA and QS systems were 74.66%, 69.54%, and 3.64%, respectively, compared with the control system. The analysis of variance showed that there were significant differences (P < 0.05) in the TP concentration of the overlying water between the LMB, Al-PIA capping system, and the control system. Lanthanum ions in LMB can fix phosphorus. Al-PIA reduces the phosphorus concentration in water by means of ion exchange, adsorption, complexation, etc. LMB and Al-PIA promoted the migration of phosphorus in sediment. Among them, the phosphorus fixed by Al-PIA was mainly in the form of non-apatite inorganic phosphorus (NAIP) in inorganic phosphorus (IP), which can be seen; Al-PIA can effectively reduce the phosphorus load of eutrophic water.
Collapse
Affiliation(s)
- Yichao Wang
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shuwen Li
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shupo Liu
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Fei Li
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhenming Zhou
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|